1,458 research outputs found

    Serum thyroid hormone antibodies are frequent in patients with polyglandular autoimmune syndrome type 3, particularly in those who require thyroxine treatment

    Get PDF
    Polyglandular autoimmune syndrome (PAS) type 3 consists of autoimmune thyroid disease (AITD) coexisting with ≥1 non-thyroidal autoimmune disease (NTAID) other than Addison’s disease and hypoparathyroidism. We evaluated the prevalence and repertoire of thyroid hormones antibodies (THAb) in PAS-3 patients. Using a radioimmunoprecipation technique, we measured THAb (T3IgM, T3IgG, T4IgM, and T4IgG) in 107 PAS-3 patients and 88 controls (patients with AITD without any NTAID). Based on the selective coexistence of AITD with one NTAID (chronic autoimmune gastritis, non-segmental vitiligo or celiac disease), patients were divided into group 1 (chronic autoimmune gastritis positive, n = 64), group 2 (non-segmental vitiligo positive, n = 24), and group 3 (celiac disease positive, n = 15). At least one of the four THAb was detected in 45 PAS-3 patients (42.1%) and 28 controls (31.8%, P = 0.14), with similar rates in the three PAS-3 groups. The rates of T3Ab, T4Ab, and T3 + T4Ab were similar in groups 1 and 2, while in group 3, T3Ab was undetected (P = 0.02). In PAS-3 patients, the rate of levothyroxine treatment was greater in THAb-positive patients compared to THAb-negative patients (76.7 vs. 56.1%, P = 0.03, RR = 1.4, 95% CI 1.03–1.81). Not unexpectedly, levothyroxine daily dose was significantly higher in group 1 and group 3, namely in patients with gastrointestinal disorders, compared to group 2 (1.9 ± 0.4 and 1.8 ± 0.3 vs. 1.5 ± 0.2 μg/kg body weight, P = 0.0005 and P = 0.004). Almost half of PAS-3 patients have THAb, whose repertoire is similar if chronic autoimmune gastritis or celiac disease is present. A prospective study would confirm whether THAb positivity predicts greater likelihood of requiring levothyroxine treatment

    Mir-34a-5p Mediates Cross-Talk between M2 Muscarinic Receptors and Notch-1/EGFR Pathways in U87MG Glioblastoma Cells: Implication in Cell Proliferation

    Get PDF
    Glioblastoma (GBM) is the most aggressive human brain tumor. The high growth potential and decreased susceptibility to apoptosis of the glioma cells is mainly dependent on genetic amplifications or mutations of oncogenic or pro-apoptotic genes, respectively. We have previously shown that the activation of the M2 acetylcholine muscarinic receptors inhibited cell proliferation and induced apoptosis in two GBM cell lines and cancer stem cells. The aim of this study was to delve into the molecular mechanisms underlying the M2-mediated cell proliferation arrest. Exploiting U87MG and U251MG cell lines as model systems, we evaluated the ability of M2 receptors to interfere with Notch-1 and EGFR pathways, whose activation promotes GBM proliferation. We demonstrated that the activation of M2 receptors, by agonist treatment, counteracted Notch and EGFR signaling, through different regulatory cascades depending, at least in part, on p53 status. Only in U87MG cells, which mimic p53-wild type GBMs, did M2 activation trigger a molecular circuitry involving p53, Notch-1, and the tumor suppressor mir-34a-5p. This regulatory module negatively controls Notch-1, which affects cell proliferation mainly through the Notch-1/EGFR axis. Our data highlighted, for the first time, a molecular circuitry that is deregulated in the p53 wild type GBM, based on the cross-talk between M2 receptor and the Notch-1/EGFR pathways, mediated by mir-34a-5p

    Dysregulated homeostasis of acetylcholine levels in immune cells of RR-multiple sclerosis patients

    Get PDF
    Multiple sclerosis (MS) is characterized by pro-inflammatory cytokine production. Acetylcholine (ACh) contributes to the modulation of central and peripheral inflammation. We studied the homeostasis of the cholinergic system in relation to cytokine levels in immune cells and sera of relapsing remitting-MS (RR-MS) patients. We demonstrated that lower ACh levels in serum of RR-MS patients were inversely correlated with the increased activity of the hydrolyzing enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Interestingly, the expression of the ACh biosynthetic enzyme and the protein carriers involved in non-vesicular ACh release were found overexpressed in peripheral blood mononuclear cells of MS patients. The inflammatory state of the MS patients was confirmed by increased levels of TNF alpha, IL-12/IL-23p40, IL-18. The lower circulating ACh levels in sera of MS patients are dependent on the higher activity of cholinergic hydrolyzing enzymes. The smaller ratio of ACh to TNF alpha, IL-12/IL-23p40 and IL-18 in MS patients, with respect to healthy donors (HD), is indicative of an inflammatory environment probably related to the alteration of cholinergic system homeostasis

    Butyrylcholinesterase and Acetylcholinesterase polymorphisms in Multiple Sclerosis patients: Implication in peripheral inflammation

    Get PDF
    Multiple Sclerosis (MS) is an autoimmune disease, having not fully understood aetiology, and both genetic and environmental factors contribute to the pathogenesis of the disease. The cholinergic system has been indicated as a mediator of neuro-immune interactions, as well as an internal regulator of immune responses. The aim of the present research was to assess the associations between BChE and AChE genetic variations and serum cholinergic and inflammatory profiles in 102 Relapsing Remitting-MS patients and 117 healthy controls. An increased frequency of the BChE K-allele in MS patients as compared to controls was found. In addition, data showed that patients had higher BChE enzymatic activity, which is increased by the presence of the polymorphic allele and reduced amounts of circulating ACh. AChE polymorphism was significantly associated to reduced activity in both patients and controls. We propose that serum BChE and AChE activity may be used as a secondary markers to assess the role of non-neuronal cholinergic system in regulating peripheral inflammation via ACh regulation. This pilot study shed light on the role of the non-neuronal cholinergic system in immune cells to better understand MS pathogenesis. The cross-talk between the periphery and the CNS could have a new undescribed crucial role for MS, regarded as a systemic disease

    A circular dichroism study of the protective role of polyphosphoesters polymer chains in polyphosphoester‐myoglobin conjugates

    Get PDF
    Protein-polymer conjugates are a blooming class of hybrid systems with high biomedical potential. Despite a plethora of papers on their biomedical properties, the physical–chemical characterization of many protein-polymer conjugates is missing. Here, we evaluated the thermal stability of a set of fully-degradable polyphosphoester-protein conjugates by variable temperature circular dichroism, a common but powerful technique. We extensively describe their thermodynamic stability in different environments (in physiological buffer or in presence of chemical denaturants, e.g., acid or urea), highlighting the protective role of the polymer in preserving the protein from denaturation. For the first time, we propose a simple but effective protocol to achieve useful information on these systems in vitro, useful to screen new samples in their early stages

    Aeromonas detection and their toxins from drinking water form reservoirs and drinking fountains

    Get PDF
    Aeromonads are inhabitants of aquatic ecosystems and are described as being involved in intestinal disturbances and other infections. A total of 200 drinking water samples from domestic and public reservoirs and drinking fountains located in São Paulo (Brazil), were analyzed for the presence of Aeromonas. Samples were concentrated by membrane filtration and enriched in APW. ADA medium was used for Aeromonas isolation and colonies were confirmed by biochemical characterization. Strains isolated were tested for hemolysin and toxin production. Aeromonas was detected in 12 samples (6.0%). Aeromonas strains (96) were isolated and identified as: A. caviae (41.7%), A. hydrophila (15.7%), A.allosacharophila (10.4%), A. schubertii (1.0%) and Aeromonas spp. (31.2%).The results revealed that 70% of A. caviae, 66.7% of A. hydrophila, 80% of A. allosacharophila and 46.6% of Aeromonas spp. were hemolytic. The assay for checking production of toxins showed that 17.5% of A. caviae, 73.3% of A. hydrophila, 60% of A. allosacharophila, 100% of A. schubertii, and 33.3% of Aeromonas spp. were able to produce toxins. The results demonstrated the pathogenic potential of Aeromonas, indicating that the presence of this emerging pathogen in water systems is a public health concer
    corecore