5 research outputs found

    Biodiversity of Reef-Building, Scleractinian Corals

    No full text
    Zooxanthellate scleractinian corals are moderately well-known for shallow reef habitats, but not for mesophotic depths (>30 m) that are relatively difficult to access. Mesophotic habitats are light-limited, with different hydrodynamics and sedimentation processes, which result in growth forms that are often difficult to classify using traditional schemes based largely on shallow reef specimens. We analyzed published data and museum records, using specimen-based records to minimize classification issues, finding 53 mesophotic species in the western Atlantic Ocean (85% of total species) and 338 in the Indo-Pacific (45%). Only four species were recorded exclusively below 30 m depth, while the great majority were common shallow reef taxa. Over 96% of western Atlantic and 82% of Indo-Pacific genera and most coral lineages were represented below 30 m depth. In the Indo-Pacific, species and genus richness varied widely between regions and were significantly correlated with shallow reef species richness. Overall, species richness decreased steadily with increasing depth, with little evidence for distinct faunal boundaries: 157 species occurred >= 60 m and 31 deeper than 100 m, with species occurrence only moderately related to phylogeny. Our knowledge of mesophotic biodiversity is rapidly changing as more regions are documented and new molecular techniques suggest taxonomic revisions and resolve deepwater cryptic species. We conclude that mesophotic scleractinian fauna are largely a subset of shallow scleractinian fauna, comprising a significant proportion of coral species and most genera, with the potential to play a significant role in lineage preservation and the future of coral reefs

    The Coral Trait Database, a curated database of trait information for coral species from the global oceans.

    Get PDF
    Trait-based approaches advance ecological and evolutionary research because traits provide a strong link to an organism's function and fitness. Trait-based research might lead to a deeper understanding of the functions of, and services provided by, ecosystems, thereby improving management, which is vital in the current era of rapid environmental change. Coral reef scientists have long collected trait data for corals; however, these are difficult to access and often under-utilized in addressing large-scale questions. We present the Coral Trait Database initiative that aims to bring together physiological, morphological, ecological, phylogenetic and biogeographic trait information into a single repository. The database houses species- and individual-level data from published field and experimental studies alongside contextual data that provide important framing for analyses. In this data descriptor, we release data for 56 traits for 1547 species, and present a collaborative platform on which other trait data are being actively federated. Our overall goal is for the Coral Trait Database to become an open-source, community-led data clearinghouse that accelerates coral reef research
    corecore