11 research outputs found

    Nutritional, Health, and Technological Functionality of Lupin Flour Addition to Bread and Other Baked Products: Benefits and Challenges

    Get PDF
    Lupin is an undervalued legume despite its high protein and dietary fiber content and potential health benefits. This review focuses on the nutritional value, health benefits, and technological effects of incorporating lupin flour into wheat-based bread. Results of clinical studies suggest that consuming lupin compared to wheat bread and other baked products reduce chronic disease risk markers; possibly due to increased protein and dietary fiber and bioactive compounds. However, lupin protein allergy has also been recorded. Bread quality has been improved when 10% lupin flour is substituted for refined wheat flour; possibly due to lupin-wheat protein cross-linking assisting bread volume and the high water-binding capacity (WBC) of lupin fiber delaying staling. Above 10% substitution appears to reduce bread quality due to lupin proteins low elasticity and the high WBC of its dietary fiber interrupting gluten network development. Gaps in understanding of the role of lupin flour in bread quality include the optimal formulation and processing conditions to maximize lupin incorporation, role of protein cross-linking, antistaling functionality, and bioactivity of its Îł-conglutin protein

    Déréglementations métaboliques affectant l'architecture de la chromatine : Métabolisme à un carbone et impact du cycle de Krebs sur la méthylation des histones.

    No full text
    International audienceThe methylation status of a particular amino acid results from the interplay of two enzymes: “Writers” (methyltransferases) and “Erasers” (demethylases). Methylation of histones in chromatin can be recognized by “Readers” which induce changes in chromatin organization and gene expression, directed by the methylation status. Importantly, the reactions of methylation and demethylation involve several metabolites. Some, such as folate and S-adenosyl-l-methionine, act as cofactors for methyltransferases while flavin adenine dinucleotide and α-ketoglutarate act as cofactors for demethylases. Other metabolites, such as succinate and fumarate, function as enzyme inhibitors. Factors that modulate the levels of these metabolites in the cell therefore affect the dynamics of protein methylation. These factors can include diet, as well as altered expression of enzymes involved in cofactor synthesis through mutations and/or post-translational modifications. For example, methionine is a substrate for S-adenosyl-l-methionine formation, and reduction in its abundance ultimately induces a global reduction in histone methylation in vitro, affecting gene expression. Changes in the metabolic states of cells in diseases such as cancer, and regulation of metabolites required for histone methylation and demethylation, have thus been highlighted as avenues for therapeutic development. In this review, we evaluate the current knowledge concerning methylation of histones, and also of other protein substrates. We document how this is linked to metabolites such as S-adenosyl-l-methionine and other intermediates in the Krebs cycle. Finally, we discuss the implications of deregulation at this level in cancer.Le statut de mĂ©thylation d'un acide aminĂ© particulier rĂ©sulte de l'interaction de deux enzymes : "Writers" (mĂ©thyltransfĂ©rases) et "Erasers" (dĂ©mĂ©thylases). La mĂ©thylation des histones dans la chromatine peut ĂȘtre reconnue par les "Readers" qui induisent des changements dans l'organisation de la chromatine et l'expression des gĂšnes, dirigĂ©s par le statut de mĂ©thylation. Il est important de noter que les rĂ©actions de mĂ©thylation et de dĂ©mĂ©thylation impliquent plusieurs mĂ©tabolites. Certains, tels que le folate et la S-adĂ©nosyl-l-mĂ©thionine, agissent comme cofacteurs des mĂ©thyltransfĂ©rases, tandis que la flavine-adĂ©nine-dinuclĂ©otide et le α-ketoglutarate agissent comme cofacteurs des dĂ©mĂ©thylases. D'autres mĂ©tabolites, tels que le succinate et le fumarate, fonctionnent comme des inhibiteurs d'enzymes. Les facteurs qui modulent les niveaux de ces mĂ©tabolites dans la cellule affectent donc la dynamique de la mĂ©thylation des protĂ©ines. Ces facteurs peuvent inclure le rĂ©gime alimentaire, ainsi que l'altĂ©ration de l'expression des enzymes impliquĂ©es dans la synthĂšse des cofacteurs par des mutations et/ou des modifications post-traductionnelles. Par exemple, la mĂ©thionine est un substrat pour la formation de S-adĂ©nosyl-l-mĂ©thionine, et la rĂ©duction de son abondance induit finalement une rĂ©duction globale de la mĂ©thylation des histones in vitro, affectant l'expression des gĂšnes. Les modifications de l'Ă©tat mĂ©tabolique des cellules dans des maladies telles que le cancer, et la rĂ©gulation des mĂ©tabolites nĂ©cessaires Ă  la mĂ©thylation et Ă  la dĂ©mĂ©thylation des histones, ont donc Ă©tĂ© mises en Ă©vidence comme des pistes pour le dĂ©veloppement thĂ©rapeutique. Dans cette revue, nous Ă©valuons les connaissances actuelles concernant la mĂ©thylation des histones, ainsi que d'autres substrats protĂ©iques. Nous documentons la façon dont celle-ci est liĂ©e Ă  des mĂ©tabolites tels que la S-adĂ©nosyl-l-mĂ©thionine et d'autres intermĂ©diaires du cycle de Krebs. Enfin, nous discutons des implications de la dĂ©rĂ©glementation Ă  ce niveau dans le domaine du cancer
    corecore