59 research outputs found

    Daptomycin in experimental murine pneumococcal meningitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Daptomycin, a lipopeptide antibiotic, could be an alternative to vancomycin for treatment of pneumococcal meningitis. We determined the activity of daptomycin versus vancomycin, with dexamethasone as an adjuvant, in a murine model of pneumococcal meningitis.</p> <p>Methods</p> <p>Ninety-six 25–30 gram mice were inoculated intracisternally with serotype 3 <it>Streptococcus pneumoniae </it>modified by the integration of a luminescent <it>lux </it>operon. All mice were treated with either dexamethasone 1 mg/kg intraperitoneally every 6 hours alone or in combination with either vancomycin or daptomycin, also administered intraperitoneally. Serum antimicrobial concentrations were selected to approximate those achieved in humans. Following treatment, bioluminescence and cerebrospinal fluid (CSF) bacterial concentrations were determined. Caspase-3 staining was used to assess apoptosis on brain histopathology.</p> <p>Results</p> <p>Sixteen hours post intracisternal inoculation, bacterial titers in CSF were 6.8 log<sub>10 </sub>cfu/ml. Amongst the animals given no antibiotic, vancomycin 50 mg/kg at 16 and 20 hours or daptomycin 25 mg/kg at 16 hours, CSF titers were 7.6, 3.4, and 3.9 log<sub>10 </sub>cfu/ml, respectively, at 24 hours post infection (p-value, < 0.001 for both vancomycin or daptomycin versus no antibiotic); there was no significant difference in bactericidal activity between the vancomycin and daptomycin groups (p-value, 0.18). CSF bioluminescence correlated with bacterial titer (Pearson regression coefficient, 0.75). The amount of apoptosis of brain parenchymal cells was equivalent among treatment groups.</p> <p>Conclusion</p> <p>Daptomycin or vancomycin, when given in combination with dexamethasone, is active in the treatment of experimental pneumococcal meningitis.</p

    Activity and expression of urokinase-type plasminogen activator and matrix metalloproteinases in human colorectal cancer

    Get PDF
    BACKGROUND: Matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), and urokinase-type plasminogen activator (uPA) are involved in colorectal cancer invasion and metastasis. There is still debate whether the activity of MMP-2 and MMP-9 differs between tumors located in the colon and rectum. We designed this study to determine any differences in the expression of MMP-2, MMP-9 and uPA system between colon and rectal cancer tissues. METHODS: Cancer tissue samples were obtained from colon carcinoma (n = 12) and rectal carcinomas (n = 10). MMP-2 and MMP-9 levels were examined using gelatin zymography and Western blotting; their endogenous inhibitors, tissue inhibitor of metalloproteinase-2 (TIMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1), were assessed by Western blotting. uPA, uPAR and PAI-1 were examined using enzyme-linked immunosorbent assay (ELISA). The activity of uPA was assessed by casein-plasminogen zymography. RESULTS: In both colon and rectal tumors, MMP-2, MMP-9 and TIMP-1 protein levels were higher than in corresponding paired normal mucosa, while TIMP-2 level in tumors was significantly lower than in normal mucosa. The enzyme activities or protein levels of MMP-2, MMP-9 and their endogenous inhibitors did not reach a statistically significant difference between colon and rectal cancer compared with their normal mucosa. In rectal tumors, there was an increased activity of uPA compared with the activity in colon tumors (P = 0.0266), however urokinase-type plasminogen activator receptor (uPAR) and plasminogen activator inhibitor-1 (PAI-1) showed no significant difference between colon and rectal cancer tissues. CONCLUSION: These findings suggest that uPA may be expressed differentially in colon and rectal cancers, however, the activities or protein levels of MMP-2, MMP-9, TIMP-1, TIMP-2, PAI-1 and uPAR are not affected by tumor location in the colon or the rectum

    Mitochondria-Specific Accumulation of Amyloid β Induces Mitochondrial Dysfunction Leading to Apoptotic Cell Death

    Get PDF
    Mitochondria are best known as the essential intracellular organelles that host the homeostasis required for cellular survival, but they also have relevance in diverse disease-related conditions, including Alzheimer's disease (AD). Amyloid β (Aβ) peptide is the key molecule in AD pathogenesis, and has been highlighted in the implication of mitochondrial abnormality during the disease progress. Neuronal exposure to Aβ impairs mitochondrial dynamics and function. Furthermore, mitochondrial Aβ accumulation has been detected in the AD brain. However, the underlying mechanism of how Aβ affects mitochondrial function remains uncertain, and it is questionable whether mitochondrial Aβ accumulation followed by mitochondrial dysfunction leads directly to neuronal toxicity. This study demonstrated that an exogenous Aβ1–42 treatment, when applied to the hippocampal cell line of mice (specifically HT22 cells), caused a deleterious alteration in mitochondria in both morphology and function. A clathrin-mediated endocytosis blocker rescued the exogenous Aβ1–42-mediated mitochondrial dysfunction. Furthermore, the mitochondria-targeted accumulation of Aβ1–42 in HT22 cells using Aβ1–42 with a mitochondria-targeting sequence induced the identical morphological alteration of mitochondria as that observed in the APP/PS AD mouse model and exogenous Aβ1–42-treated HT22 cells. In addition, subsequent mitochondrial dysfunctions were demonstrated in the mitochondria-specific Aβ1–42 accumulation model, which proved indistinguishable from the mitochondrial impairment induced by exogenous Aβ1–42-treated HT22 cells. Finally, cellular toxicity was directly induced by mitochondria-targeted Aβ1–42 accumulation, which mimics the apoptosis process in exogenous Aβ1–42-treated HT22 cells. Taken together, these results indicate that mitochondria-targeted Aβ1–42 accumulation is the necessary and sufficient condition for Aβ-mediated mitochondria impairments, and leads directly to cellular death rather than along with other Aβ-mediated signaling alterations

    Direct Stimulation of Adult Neural Stem/Progenitor Cells In Vitro and Neurogenesis In Vivo by Salvianolic Acid B

    Get PDF
    Background: Small molecules have been shown to modulate the neurogenesis processes. In search for new therapeutic drugs, the herbs used in traditional medicines for neurogenesis are promising candidates. Methodology and Principal Findings: We selected a total of 45 natural compounds from Traditional Chinese herbal medicines which are extensively used in China to treat stroke clinically, and tested their proliferation-inducing activities on neural stem/progenitor cells (NSPCs). The screening results showed that salvianolic acid B (Sal B) displayed marked effects on the induction of proliferation of NSPCs. We further demonstrated that Sal B promoted NSPCs proliferation in dose- and time-dependent manners. To explore the molecular mechanism, PI3K/Akt, MEK/ERK and Notch signaling pathways were investigated. Cell proliferation assay demonstrated that Ly294002 (PI3K/Akt inhibitor), but neither U0126 (ERK inhibitor) nor DAPT (Notch inhibitor) inhibited the Sal B-induced proliferation of cells. Western Blotting results showed that stimulation of NSPCs with Sal B enhanced the phosphorylation of Akt, and Ly294002 abolished this effect, confirming the role of Akt in Sal B mediated proliferation of NSPCs. Rats exposed to transient cerebral ischemia were treated for 4 weeks with Sal B from the 7th day after stroke. BrdU incorporation assay results showed that exposure Sal B could maintain the proliferation of NSPCs after cerebral ischemia. Morris water maze test showed that delayed post-ischemic treatment with Sal B improved cognitive impairment after stroke in rats

    Cardiovascular and metabolic influences of fetal smoke exposure

    Get PDF
    Many epidemiological studies showed associations of low birth weight with cardiovascular disease, type 2 diabetes and obesity. The associations seem to be consistent and stronger among subjects with a postnatal catch up growth. It has been suggested that developmental changes in response to adverse fetal exposures might lead to changes in the fetal anatomy and physiology. These adaptations may be beneficial for short term, but may lead to common diseases in adulthood. Maternal smoking during pregnancy is one of the most important adverse fetal exposures in Western countries, and is known to be associated with a 150–200 g lower birth weight. An accumulating body of evidence suggests that maternal smoking during pregnancy might be involved in pathways leading to both low birth weight and common diseases, including cardiovascular disease, type 2 diabetes and obesity, in adulthood. In this review, we discuss epidemiological studies focused on the associations of maternal smoking with fetal growth and development and cardiovascular and metabolic disease in later life. We also discuss potential biological mechanisms, and challenges for future epidemiological studies

    Fetal and infant origins of asthma

    Get PDF
    Previous studies have suggested that asthma, like other common diseases, has at least part of its origin early in life. Low birth weight has been shown to be associated with increased risks of asthma, chronic obstructive airway disease, and impaired lung function in adults, and increased risks of respiratory symptoms in early childhood. The developmental plasticity hypothesis suggests that the associations between low birth weight and diseases in later life are explained by adaptation mechanisms in fetal life and infancy in response to various adverse exposures. Various pathways leading from adverse fetal and infant exposures to growth adaptations and respiratory health outcomes have been studied, including fetal and early infant growth patterns, maternal smoking and diet, children’s diet, respiratory tract infections and acetaminophen use, and genetic susceptibility. Still, the specific adverse exposures in fetal and early postnatal life leading to respiratory disease in adult life are not yet fully understood. Current studies suggest that both environmental and genetic factors in various periods of life, and their epigenetic mechanisms may underlie the complex associations of low birth weight with respiratory disease in later life. New well-designed epidemiological studies are needed to identify the specific underlying mechanisms. This review is focused on specific adverse fetal and infant growth patterns and exposures, genetic susceptibility, possible respiratory adaptations and perspectives for new studies

    Behavioral genetics and taste

    Get PDF
    This review focuses on behavioral genetic studies of sweet, umami, bitter and salt taste responses in mammals. Studies involving mouse inbred strain comparisons and genetic analyses, and their impact on elucidation of taste receptors and transduction mechanisms are discussed. Finally, the effect of genetic variation in taste responsiveness on complex traits such as drug intake is considered. Recent advances in development of genomic resources make behavioral genetics a powerful approach for understanding mechanisms of taste

    Development of a Real-Time PCR for Identification of Brachyspira Species in Human Colonic Biopsies

    Get PDF
    Background: Brachyspira species are fastidious anaerobic microorganisms, that infect the colon of various animals. The genus contains both important pathogens of livestock as well as commensals. Two species are known to infect humans: B. aalborgi and B. pilosicoli. There is some evidence suggesting that the veterinary pathogenic B. pilosicoli is a potential zoonotic agent, however, since diagnosis in humans is based on histopathology of colon biopsies, species identification is not routinely performed in human materials. Methods: The study population comprised 57 patients with microscopic evidence of Brachyspira infection and 26 patients with no histopathological evidence of Brachyspira infection. Concomitant faecal samples were available from three infected patients. Based on publically available 16S rDNA gene sequences of all Brachyspira species, species-specific primer sets were designed. DNA was extracted and tested by real-time PCR and 16S rDNA was sequenced. Results: Sensitivity and specificity for identification of Brachyspira species in colon biopsies was 100% and 87.7% respectively. Sequencing revealed B. pilosicoli in 15.4% of patients, B. aalborgi in 76.9% and a third species, tentatively named ‘‘Brachyspira hominis’’, in 26.2%. Ten patients (12.3%) had a double and two (3.1%) a triple infection. The presence of Brachyspira pilosicoli was significantly associated with inflammatory changes in the colon-biopsy (p = 0.028). Conclusions: This newly designed PCR allows for sub-differentiation of Brachyspira species in patient material and thus allows large-scaled surveillance studies to elucidate the pathogenicity of human Brachyspira infections. One-third of affected patients appeared to be infected with a novel species

    GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes

    Get PDF
    Carotid artery intima media thickness (cIMT) and carotid plaque are measures of subclinical atherosclerosis associated with ischemic stroke and coronary heart disease (CHD). Here, we undertake meta-analyses of genome-wide association studies (GWAS) in 71,128 individuals for cIMT, and 48,434 individuals for carotid plaque traits. We identify eight novel susceptibility loci for cIMT, one independent association at the previously-identified PINX1 locus, and one novel locus for carotid plaque. Colocalization analysis with nearby vascular expression quantitative loci (cis-eQTLs) derived from arterial wall and metabolic tissues obtained from patients with CHD identifies candidate genes at two potentially additional loci, ADAMTS9 and LOXL4. LD score regression reveals significant genetic correlations between cIMT and plaque traits, and both cIMT and plaque with CHD, any stroke subtype and ischemic stroke. Our study provides insights into genes and tissue-specific regulatory mechanisms linking atherosclerosis both to its functional genomic origins and its clinical consequences in humans
    corecore