20 research outputs found

    Overshoot mechanism in transient excitation of THz and Gunn oscillations in wide-bandgap semiconductors

    Get PDF
    A detailed study of high-field transient and direct-current (DC) transport in GaN-based Gunn diode oscillators is carried out using the commercial simulator Sentaurus Device. Applicability of drift-diffusion (DD) and hydrodynamic (HD) models to high-speed, highfrequency devices is discussed in depth, and the results of the simulations from these models are compared. It is shown, for a highly homogeneous device based on a short (2 μm) supercritically doped (1017 cm-3) GaN specimen, that the DD model is unable to correctly take into account some essential physical effects which determine the operation mode of the device. At the same time, the HD model is ideally suited to solve such problems due to its ability to incorporate non-local effects. We show that the velocity overshoot near the device contacts and space charge injection and extraction play a crucial role in defining the operation mode of highly homogeneous short diodes in both the transient regime and the voltagecontrolled oscillation regime. The transient conduction current responses are fundamentally different in the DD and HD models. The DD current simply repeats the velocity-field (v-F) characteristics, and the sample remains in a completely homogeneous state. In the HD model, the transient current pulse with a full width at half maximum of approximately 0.2 ps is increased about twofold due to the carrier injection (extraction) into (from) the active region and the velocity overshoot. The electron gas is characterized by highly inhomogeneous distributions of the carrier density, the electric field and the electron temperature. The simulation of the DC steady states of the diodes also shows very different results for the two models. The HD model shows the trapped stable anodic domain in the device, while the DD model completely retains all features of the v-F characteristics in a homogeneous gas. Simulation of the voltage-controlled oscillator shows that it operates in the accumulation layer mode generating microwave signals at 0.3 to 0.7 THz. In spite of the fact that the known criterion of a Gunn domain mode n0L > (n0L)0 was satisfied, no Gunn domains were observed. The explanation of this phenomenon is given. © 2012 Momox et al

    Zicam-Induced Damage to Mouse and Human Nasal Tissue

    Get PDF
    Intranasal medications are used to treat various nasal disorders. However, their effects on olfaction remain unknown. Zicam (zinc gluconate; Matrixx Initiatives, Inc), a homeopathic substance marketed to alleviate cold symptoms, has been implicated in olfactory dysfunction. Here, we investigated Zicam and several common intranasal agents for their effects on olfactory function. Zicam was the only substance that showed significant cytotoxicity in both mouse and human nasal tissue. Specifically, Zicam-treated mice had disrupted sensitivity of olfactory sensory neurons to odorant stimulation and were unable to detect novel odorants in behavioral testing. These findings were long-term as no recovery of function was observed after two months. Finally, human nasal explants treated with Zicam displayed significantly elevated extracellular lactate dehydrogenase levels compared to saline-treated controls, suggesting severe necrosis that was confirmed on histology. Our results demonstrate that Zicam use could irreversibly damage mouse and human nasal tissue and may lead to significant smell dysfunction

    Iron homeostasis and oxidative stress in idiopathic pulmonary alveolar proteinosis: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lung injury caused by both inhaled dusts and infectious agents depends on increased availability of iron and metal-catalyzed oxidative stress. Because inhaled particles, such as silica, and certain infections can cause secondary pulmonary alveolar proteinosis (PAP), we tested the hypothesis that idiopathic PAP is associated with an altered iron homeostasis in the human lung.</p> <p>Methods</p> <p>Healthy volunteers (n = 20) and patients with idiopathic PAP (n = 20) underwent bronchoalveolar lavage and measurements were made of total protein, iron, tranferrin, transferrin receptor, lactoferrin, and ferritin. Histochemical staining for iron and ferritin was done in the cell pellets from control subjects and PAP patients, and in lung specimens of patients without cardiopulmonary disease and with PAP. Lavage concentrations of urate, glutathione, and ascorbate were also measured as indices of oxidative stress.</p> <p>Results</p> <p>Lavage concentrations of iron, transferrin, transferrin receptor, lactoferrin, and ferritin were significantly elevated in PAP patients relative to healthy volunteers. The cells of PAP patients had accumulated significant iron and ferritin, as well as considerable amounts of extracellular ferritin. Immunohistochemistry for ferritin in lung tissue revealed comparable amounts of this metal-storage protein in the lower respiratory tract of PAP patients both intracellularly and extracellularly. Lavage concentrations of ascorbate, glutathione, and urate were significantly lower in the lavage fluid of the PAP patients.</p> <p>Conclusion</p> <p>Iron homeostasis is altered in the lungs of patients with idiopathic PAP, as large amounts of catalytically-active iron and low molecular weight anti-oxidant depletion are present. These findings suggest a metal-catalyzed oxidative stress in the maintenance of this disease.</p

    Evaluation of young smokers and non-smokers with Electrogustometry and Contact Endoscopy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Smoking is the cause of inducing changes in taste functionality under conditions of chronic exposure. The objective of this study was to evaluate taste sensitivity in young smokers and non-smokers and identify any differences in the shape, density and vascularisation of the fungiform papillae (fPap) of their tongue.</p> <p>Methods</p> <p>Sixty-two male subjects who served in the Greek military forces were randomly chosen for this study. Thirty-four were non-smokers and 28 smokers. Smokers were chosen on the basis of their habit to hold the cigarette at the centre of their lips. Taste thresholds were measured with Electrogustometry (EGM). The morphology and density of the fungiform papillae (fPap) at the tip of the tongue were examined with Contact Endoscopy (CE).</p> <p>Results</p> <p>There was found statistically important difference (<it>p </it>< 0.05) between the taste thresholds of the two groups although not all smokers presented with elevated taste thresholds: Six of them (21%) had taste thresholds similar to those of non-smokers. Differences concerning the shape and the vessels of the fungiform papillae between the groups were also detected. Fewer and flatter fPap were found in 22 smokers (79%).</p> <p>Conclusion</p> <p>The majority of smokers shown elevated taste thresholds in comparison to non-smokers. Smoking is an important factor which can lead to decreased taste sensitivity. The combination of methods, such as EGM and CE, can provide useful information about the vascularisation of taste buds and their functional ability.</p

    Telomere Shortening Impairs Regeneration of the Olfactory Epithelium in Response to Injury but Not Under Homeostatic Conditions

    Get PDF
    Atrophy of the olfactory epithelium (OE) associated with impaired olfaction and dry nose represents one of the most common phenotypes of human aging. Impairment in regeneration of a functional olfactory epithelium can also occur in response to injury due to infection or nasal surgery. These complications occur more frequently in aged patients. Although age is the most unifying risk factor for atrophic changes and functional decline of the olfactory epithelium, little is known about molecular mechanisms that could influence maintenance and repair of the olfactory epithelium. Here, we analyzed the influence of telomere shortening (a basic mechanism of cellular aging) on homeostasis and regenerative reserve in response to chemical induced injury of the OE in late generation telomere knockout mice (G3 mTerc−/−) with short telomeres compared to wild type mice (mTerc+/+) with long telomeres. The study revealed no significant influence of telomere shortening on homeostatic maintenance of the OE during mouse aging. In contrast, the regenerative response to chemical induced injury of the OE was significantly impaired in G3 mTerc−/− mice compared to mTerc+/+ mice. Seven days after chemical induced damage, G3 mTerc−/− mice exhibited significantly enlarged areas of persisting atrophy compared to mTerc+/+ mice (p = 0.031). Telomere dysfunction was associated with impairments in cell proliferation in the regenerating epithelium. Deletion of the cell cycle inhibitor, Cdkn1a (p21) rescued defects in OE regeneration in telomere dysfunctional mice. Together, these data indicate that telomere shortening impairs the regenerative capacity of the OE by impairing cell cycle progression in a p21-dependent manner. These findings could be relevant for the impairment in OE function in elderly people
    corecore