356 research outputs found

    ILAE Genetic Literacy Series: Postmorterm Genetic Testing in Sudden Unexpected Death in Epilepsy

    Get PDF
    A 24-year-old man with non-lesional bitemporal lobe epilepsy since age 16 years was found dead in bed around midday. He was last seen the previous night when he was witnessed to have a tonic–clonic seizure. Before his death, he was experiencing weekly focal impaired awareness seizures and up to two focal-to-bilateral tonic–clonic seizures each year. He had trialed several antiseizure medications and was on levetiracetam 1500 mg/day, lamotrigine 400 mg/day, and clobazam 10 mg/day at the time of death. Other than epilepsy, his medical history was unremarkable. Of note, he had an older brother with a history of febrile seizures and a paternal first cousin with epilepsy. No cause of death was identified following a comprehensive postmortem investigation. The coroner classified the death as “sudden unexpected death in epilepsy” (SUDEP), and it would qualify as “definite SUDEP” using the current definitions.1 This left the family with many questions unanswered; in particular, they wish to know what caused the death and whether it could happen to other family members. Could postmortem genetic testing identify a cause of death, provide closure to the family, and facilitate cascade genetic testing of first-degree family members who may be at risk of sudden death? While grieving family members struggle with uncertainty about the cause of death, we as clinicians also face similar uncertainties about genetic contributions to SUDEP, especially when the literature is sparse, and the utility of genetic testing is still being worked out. We aim to shed some light on this topic, highlighting areas where data is emerging but also areas where uncertainty remains, keeping our case in mind as we examine this clinically important area

    Links between traumatic brain injury and ballistic pressure waves originating in the thoracic cavity and extremities

    Full text link
    Identifying patients at risk of traumatic brain injury (TBI) is important because research suggests prophylactic treatments to reduce risk of long-term sequelae. Blast pressure waves can cause TBI without penetrating wounds or blunt force trauma. Similarly, bullet impacts distant from the brain can produce pressure waves sufficient to cause mild to moderate TBI. The fluid percussion model of TBI shows that pressure impulses of 15-30 psi cause mild to moderate TBI in laboratory animals. In pigs and dogs, bullet impacts to the thigh produce pressure waves in the brain of 18-45 psi and measurable injury to neurons and neuroglia. Analyses of research in goats and epidemiological data from shooting events involving humans show high correlations (r > 0.9) between rapid incapacitation and pressure wave magnitude in the thoracic cavity. A case study has documented epilepsy resulting from a pressure wave without the bullet directly hitting the brain. Taken together, these results support the hypothesis that bullet impacts distant from the brain produce pressure waves that travel to the brain and can retain sufficient magnitude to induce brain injury. The link to long-term sequelae could be investigated via epidemiological studies of patients who were gunshot in the chest to determine whether they experience elevated rates of epilepsy and other neurological sequelae

    ILAE Genetic Literacy Series: Self-limited familial epilepsy syndromes with onset in neonatal age and infancy

    Get PDF
    The self-limited (familial) epilepsies with onset in neonates or infants, formerly called benign familial neonatal and/or infantile epilepsies, are autosomal dominant disorders characterized by neonatal- or infantile-onset focal motor seizures and the absence of neurodevelopmental complications. Seizures tend to remit during infancy or early childhood and are therefore called “self-limited”. A positive family history for epilepsy usually suggests the genetic etiology, but incomplete penetrance and de novo inheritance occur. Here, we review the phenotypic spectrum and the genetic architecture of self-limited (familial) epilepsies with onset in neonates or infants. Using an illustrative case study, we describe important clues in recognition of these syndromes, diagnostic steps including genetic testing, management, and genetic counseling

    An epidemiological study on anemia among institutionalized people with intellectual and/or motor disability with special reference to its frequency, severity and predictors

    Get PDF
    BACKGROUND: To examine the type, frequency, severity, and predictors of anemia and its relationship with co-morbid conditions among institutionalized people with intellectual and/or motor disability. METHODS: We conducted a cross-sectional study at a public facility for people with intellectual and/or motor disability in Ibaraki prefecture, Japan. Health checkup data obtained in 2001 from 477 people with intellectual disability (male: 286, average age 40.6 ± 12.3; female: 191, average age 45.1 ± 11.6) were retrospectively reviewed. RESULTS: The prevalence of anemia among male participants was higher than in female participants for each disability category (intellectual disability, 41.1%, 4.2%; cerebral palsy, 37.5%, 4.8%; Down's syndrome, 15.0%, 0%; severe motor and intellectual disabilities, 61.9%, 16.7%). Most participants with anemia (93.8 – 100%) showed a normocytic normochromic anemia pattern. Multivariate analysis revealed that factors related to an increase in frequency included sex (male), low body mass index (BMI), use of anticonvulsants or major tranquilizers, and a high zinc sulfate turbidity test (ZTT) value. No clinically diagnosed co-morbid condition was found to be related to the presence of anemia. CONCLUSION: A high frequency of mild normocytic normochromic anemia in institutionalized people with intellectual and/or motor disability was observed, particularly among males. Medications and chronic inflammation may increase the risk of anemia

    The association of patient weight and dose of fosphenytoin, levetiracetam, and valproic acid with treatment success in status epilepticus

    Get PDF
    The Established Status Epilepticus Treatment Trial was a blinded, comparative‐effectiveness study of fosphenytoin, levetiracetam, and valproic acid in benzodiazepine‐refractory status epilepticus. The primary outcome was clinical seizure cessation and increased responsiveness without additional anticonvulsant medications. Weight‐based dosing was capped at 75 kg. Hence, patients weighing >75 kg received a lower mg/kg dose. Logistic regression models were developed in 235 adults to determine the association of weight (≤ or >75 kg, ≤ or >90 kg), sex, treatment, and weight‐normalized dose with the primary outcome and solely seizure cessation. The primary outcome was achieved in 45.1% and 42.5% of those ≤75 kg and >75 kg, respectively. Using univariate analyses, the likelihood of success for those >75 kg (odds ratio [OR] = 0.9, 95% confidence interval [CI] = 0.54‐1.51) or >90 kg (OR = 0.85, 95% CI = 0.42‐1.66) was not statistically different compared with those ≤75 kg or ≤90 kg, respectively. Similarly, other predictors were not significantly associated with primary outcome or clinical seizure cessation. Our findings suggest that doses, capped at 75 kg, likely resulted in concentrations greater than those needed for outcome. Studies that include drug concentrations and heavier individuals are needed to confirm these findings

    Delayed mGluR5 activation limits neuroinflammation and neurodegeneration after traumatic brain injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Traumatic brain injury initiates biochemical processes that lead to secondary neurodegeneration. Imaging studies suggest that tissue loss may continue for months or years after traumatic brain injury in association with chronic microglial activation. Recently we found that metabotropic glutamate receptor 5 (mGluR5) activation by (<it>RS</it>)-2-chloro-5-hydroxyphenylglycine (CHPG) decreases microglial activation and release of associated pro-inflammatory factors <it>in vitro</it>, which is mediated in part through inhibition of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Here we examined whether delayed CHPG administration reduces chronic neuroinflammation and associated neurodegeneration after experimental traumatic brain injury in mice.</p> <p>Methods</p> <p>One month after controlled cortical impact traumatic brain injury, C57Bl/6 mice were randomly assigned to treatment with single dose intracerebroventricular CHPG, vehicle or CHPG plus a selective mGluR5 antagonist, 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine. Lesion volume, white matter tract integrity and neurological recovery were assessed over the following three months.</p> <p>Results</p> <p>Traumatic brain injury resulted in mGluR5 expression in reactive microglia of the cortex and hippocampus at one month post-injury. Delayed CHPG treatment reduced expression of reactive microglia expressing NADPH oxidase subunits; decreased hippocampal neuronal loss; limited lesion progression, as measured by repeated T2-weighted magnetic resonance imaging (at one, two and three months) and white matter loss, as measured by high field <it>ex vivo </it>diffusion tensor imaging at four months; and significantly improved motor and cognitive recovery in comparison to the other treatment groups.</p> <p>Conclusion</p> <p>Markedly delayed, single dose treatment with CHPG significantly improves functional recovery and limits lesion progression after experimental traumatic brain injury, likely in part through actions at mGluR5 receptors that modulate neuroinflammation.</p

    Moderate Traumatic Brain Injury Causes Acute Dendritic and Synaptic Degeneration in the Hippocampal Dentate Gyrus

    Get PDF
    Hippocampal injury-associated learning and memory deficits are frequent hallmarks of brain trauma and are the most enduring and devastating consequences following traumatic brain injury (TBI). Several reports, including our recent paper, showed that TBI brought on by a moderate level of controlled cortical impact (CCI) induces immature newborn neuron death in the hippocampal dentate gyrus. In contrast, the majority of mature neurons are spared. Less research has been focused on these spared neurons, which may also be injured or compromised by TBI. Here we examined the dendrite morphologies, dendritic spines, and synaptic structures using a genetic approach in combination with immunohistochemistry and Golgi staining. We found that although most of the mature granular neurons were spared following TBI at a moderate level of impact, they exhibited dramatic dendritic beading and fragmentation, decreased number of dendritic branches, and a lower density of dendritic spines, particularly the mushroom-shaped mature spines. Further studies showed that the density of synapses in the molecular layer of the hippocampal dentate gyrus was significantly reduced. The electrophysiological activity of neurons was impaired as well. These results indicate that TBI not only induces cell death in immature granular neurons, it also causes significant dendritic and synaptic degeneration in pathohistology. TBI also impairs the function of the spared mature granular neurons in the hippocampal dentate gyrus. These observations point to a potential anatomic substrate to explain, in part, the development of posttraumatic memory deficits. They also indicate that dendritic damage in the hippocampal dentate gyrus may serve as a therapeutic target following TBI
    corecore