2,716 research outputs found
Recommended from our members
Phaeoviruses discovered in kelp (Laminariales)
Phaeoviruses are latent double-stranded DNA viruses that insert their genomes into those of their brown algal (Phaeophyceae) hosts. So far these viruses are known only from members of the Ectocarpales, which are small and short-lived macroalgae. Here we report molecular and morphological evidence for a new Phaeovirus cluster, referred to as sub-group C, infecting kelps (Laminariales) of the genera Laminaria and Saccharina, which are ecologically and commercially important seaweeds. Epifluorescence and TEM observations indicate that the Laminaria digitata Virus (LdigV), the type species of sub-group C, targets the host nucleus for its genome replication, followed by gradual degradation of the chloroplast and assembly of virions in the cytoplasm of both vegetative and reproductive cells. This study is the first to describe phaeoviruses in kelp. In the field, these viruses infected two thirds of their host populations; however, their biological impact remains unknown
Highly stretchable and sensitive self-powered sensors based on the N-Type thermoelectric effect of polyurethane/Na_{x}(Ni-ett)_{n}/graphene oxide composites
The development of stretchable organic thermoelectric materials is prompted by fast evolving application fields like flexible electronic devices, soft robotics, health monitoring and internet-of-things. Stretchability in thermoelectric materials is usually obtained by using an insulating elastomer, either as a substrate or as a matrix in a blend or composite, which, unfortunately, leads to a compromise in thermoelectric performance. Herein, a potential solution is reported exploiting the addition of graphene oxide as a secondary (nano)filler in a polyurethane/poly nickel-ethenetetrathiolates film. Compared with traditional binary blends, our ternary composite shows an increased electrical conductivity (4 times), air-stability (∼20 times after 3 months), and stretchability (38% increase in strain at break). With a gauge factor (GF) of ∼58, this new composite film shows high sensitivity to tensile strain. Thanks to its Seebeck coefficient of ∼ −40 μV K^{−1}, the composite film can generate a thermopower of ∼0.25 pW when subjected to a small temperature difference (30 °C), which could be exploited by self-powered strain sensors. Therefore, the ternary polyurethane/poly nickel-ethenetetrathiolates/graphene oxide composite film can work as a stretchable strain sensor, providing a strategy to reconcile the compromise between thermoelectric performance and stretchability
Recommended from our members
A novel evolutionary strategy revealed in the Phaeoviruses
Phaeoviruses infect the brown algae, which are major contributors to primary production of coastal waters and estuaries. They exploit a Persistent evolutionary strategy akin to a K- selected life strategy via genome integration and are the only known representatives to do so within the giant algal viruses that are typified by r- selected Acute lytic viruses. In screening the genomes of five species within the filamentous brown algal lineage, here we show an unprecedented diversity of viral gene sequence variants especially amongst the smaller phaeoviral genomes. Moreover, one variant shares features from both the two major sub-groups within the phaeoviruses. These phaeoviruses have exploited the reduction of their giant dsDNA genomes and accompanying loss of DNA proofreading capability, typical of an Acute life strategist, but uniquely retain a Persistent life strategy
Holocentric Chromosomes of Luzula elegans Are Characterized by a Longitudinal Centromere Groove, Chromosome Bending, and a Terminal Nucleolus Organizer Region
The structure of holocentric chromosomes was analyzed in mitotic cells of Luzula elegans. Light and scanning electron microscopy observations provided evidence for the existence of a longitudinal groove along each sister chromatid. The centromere-specific histone H3 variant, CENH3, colocalized with this groove and with microtubule attachment sites. The terminal chromosomal regions were CENH3-negative. During metaphase to anaphase transition, L. elegans chromosomes typically curved to a sickle-like shape, a process that is likely to be influenced by the pulling forces of microtubules along the holocentric axis towards the corresponding microtubule organizing regions. A single pair of 45S rDNA sites, situated distal to Arabidopsis-telomere repeats, was observed at the terminal region of one chromosome pair. We suggest that the 45S rDNA position in distal centromere-free regions could be required to ensure chromosome stability. Copyright (C) 2011 S. Karger AG, Base
Timescales of Massive Human Entrainment
The past two decades have seen an upsurge of interest in the collective
behaviors of complex systems composed of many agents entrained to each other
and to external events. In this paper, we extend concepts of entrainment to the
dynamics of human collective attention. We conducted a detailed investigation
of the unfolding of human entrainment - as expressed by the content and
patterns of hundreds of thousands of messages on Twitter - during the 2012 US
presidential debates. By time locking these data sources, we quantify the
impact of the unfolding debate on human attention. We show that collective
social behavior covaries second-by-second to the interactional dynamics of the
debates: A candidate speaking induces rapid increases in mentions of his name
on social media and decreases in mentions of the other candidate. Moreover,
interruptions by an interlocutor increase the attention received. We also
highlight a distinct time scale for the impact of salient moments in the
debate: Mentions in social media start within 5-10 seconds after the moment;
peak at approximately one minute; and slowly decay in a consistent fashion
across well-known events during the debates. Finally, we show that public
attention after an initial burst slowly decays through the course of the
debates. Thus we demonstrate that large-scale human entrainment may hold across
a number of distinct scales, in an exquisitely time-locked fashion. The methods
and results pave the way for careful study of the dynamics and mechanisms of
large-scale human entrainment.Comment: 20 pages, 7 figures, 6 tables, 4 supplementary figures. 2nd version
revised according to peer reviewers' comments: more detailed explanation of
the methods, and grounding of the hypothese
Genome sequencing of the extinct Eurasian wild aurochs, Bos primigenius, illuminates the phylogeography and evolution of cattle
Background
Domestication of the now-extinct wild aurochs, Bos primigenius, gave rise to the two major domestic extant cattle taxa, B. taurus and B. indicus. While previous genetic studies have shed some light on the evolutionary relationships between European aurochs and modern cattle, important questions remain unanswered, including the phylogenetic status of aurochs, whether gene flow from aurochs into early domestic populations occurred, and which genomic regions were subject to selection processes during and after domestication. Here, we address these questions using whole-genome sequencing data generated from an approximately 6,750-year-old British aurochs bone and genome sequence data from 81 additional cattle plus genome-wide single nucleotide polymorphism data from a diverse panel of 1,225 modern animals.
Results
Phylogenomic analyses place the aurochs as a distinct outgroup to the domestic B. taurus lineage, supporting the predominant Near Eastern origin of European cattle. Conversely, traditional British and Irish breeds share more genetic variants with this aurochs specimen than other European populations, supporting localized gene flow from aurochs into the ancestors of modern British and Irish cattle, perhaps through purposeful restocking by early herders in Britain. Finally, the functions of genes showing evidence for positive selection in B. taurus are enriched for neurobiology, growth, metabolism and immunobiology, suggesting that these biological processes have been important in the domestication of cattle.
Conclusions
This work provides important new information regarding the origins and functional evolution of modern cattle, revealing that the interface between early European domestic populations and wild aurochs was significantly more complex than previously thought
Environmental benefits of leaving offshore infrastructure in the ocean
© The Ecological Society of America The removal of thousands of structures associated with oil and gas development from the world's oceans is well underway, yet the environmental impacts of this decommissioning practice remain unknown. Similar impacts will be associated with the eventual removal of offshore wind turbines. We conducted a global survey of environmental experts to guide best decommissioning practices in the North Sea, a region with a substantial removal burden. In contrast to current regulations, 94.7% of experts (36 out of 38) agreed that a more flexible case-by-case approach to decommissioning could benefit the North Sea environment. Partial removal options were considered to deliver better environmental outcomes than complete removal for platforms, but both approaches were equally supported for wind turbines. Key considerations identified for decommissioning were biodiversity enhancement, provision of reef habitat, and protection from bottom trawling, all of which are negatively affected by complete removal. We provide recommendations to guide the revision of offshore decommissioning policy, including a temporary suspension of obligatory removal
- …