303 research outputs found

    A Critical Context-Dependent Role for E Boxes in the Targeting of Somatic Hypermutation

    Get PDF
    Secondary B cell repertoire diversification occurs by somatic hypermutation (SHM) in germinal centers following Ag stimulation. In SHM, activation-induced cytidine deaminase mutates the V region of the Ig genes to increase the affinity of Abs. Although SHM acts primarily at Ig loci, low levels of off-target mutation can result in oncogenic DNA damage, illustrating the importance of understanding SHM targeting mechanisms. A candidate targeting motif is the E box, a short DNA sequence (CANNTG) found abundantly in the genome and in many SHM target genes. Using a reporter assay in chicken DT40 B cells, we previously identified a 1928-bp portion of the chicken IgL locus capable of supporting robust SHM. In this article, we demonstrate that mutation of all 20 E boxes in this fragment reduces SHM targeting activity by 90%, and that mutation of subsets of E boxes reveals a functional hierarchy in which E boxes within "core" targeting regions are of greatest importance. Strikingly, when the sequence and spacing of the 20 E boxes are preserved but surrounding sequences are altered, SHM targeting activity is eliminated. Hence, although E boxes are vital SHM targeting elements, their function is completely dependent on their surrounding sequence context. These results suggest an intimate cooperation between E boxes and other sequence motifs in SHM targeting to Ig loci and perhaps also in restricting mistargeting to certain non-Ig loci

    Reaction rates and transport in neutron stars

    Full text link
    Understanding signals from neutron stars requires knowledge about the transport inside the star. We review the transport properties and the underlying reaction rates of dense hadronic and quark matter in the crust and the core of neutron stars and point out open problems and future directions.Comment: 74 pages; commissioned for the book "Physics and Astrophysics of Neutron Stars", NewCompStar COST Action MP1304; version 3: minor changes, references updated, overview graphic added in the introduction, improvements in Sec IV.A.

    Topologically Associated Domains Delineate Susceptibility to Somatic Hypermutation

    Get PDF
    Somatic hypermutation (SHM) introduces point mutations into immunoglobulin (Ig) genes but also causes mutations in other parts of the genome. We have used lentiviral SHM reporter vectors to identify regions of the genome that are susceptible ("hot") and resistant ("cold") to SHM, revealing that SHM susceptibility and resistance are often properties of entire topologically associated domains (TADs). Comparison of hot and cold TADs reveals that while levels of transcription are equivalent, hot TADs are enriched for the cohesin loader NIPBL, super-enhancers, markers of paused/stalled RNA polymerase 2, and multiple important B cell transcription factors. We demonstrate that at least some hot TADs contain enhancers that possess SHM targeting activity and that insertion of a strong Ig SHM-targeting element into a cold TAD renders it hot. Our findings lead to a model for SHM susceptibility involving the cooperative action of cis-acting SHM targeting elements and the dynamic and architectural properties of TADs

    Physics of Neutron Star Crusts

    Get PDF
    The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.Comment: 182 pages, published version available at <http://www.livingreviews.org/lrr-2008-10

    Integrating transposable elements in the 3D genome

    Get PDF
    Chromosome organisation is increasingly recognised as an essential component of genome regulation, cell fate and cell health. Within the realm of transposable elements (TEs) however, the spatial information of how genomes are folded is still only rarely integrated in experimental studies or accounted for in modelling. Whilst polymer physics is recognised as an important tool to understand the mechanisms of genome folding, in this commentary we discuss its potential applicability to aspects of TE biology. Based on recent works on the relationship between genome organisation and TE integration, we argue that existing polymer models may be extended to create a predictive framework for the study of TE integration patterns. We suggest that these models may offer orthogonal and generic insights into the integration profiles (or "topography") of TEs across organisms. In addition, we provide simple polymer physics arguments and preliminary molecular dynamics simulations of TEs inserting into heterogeneously flexible polymers. By considering this simple model, we show how polymer folding and local flexibility may generically affect TE integration patterns. The preliminary discussion reported in this commentary is aimed to lay the foundations for a large-scale analysis of TE integration dynamics and topography as a function of the three-dimensional host genome

    Recovering probabilities for nucleotide trimming processes for T cell receptor TRA and TRG V-J junctions analyzed with IMGT tools

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nucleotides are trimmed from the ends of variable (V), diversity (D) and joining (J) genes during immunoglobulin (IG) and T cell receptor (TR) rearrangements in B cells and T cells of the immune system. This trimming is followed by addition of nucleotides at random, forming the N regions (N for nucleotides) of the V-J and V-D-J junctions. These processes are crucial for creating diversity in the immune response since the number of trimmed nucleotides and the number of added nucleotides vary in each B or T cell. IMGT<sup>® </sup>sequence analysis tools, IMGT/V-QUEST and IMGT/JunctionAnalysis, are able to provide detailed and accurate analysis of the final observed junction nucleotide sequences (tool "output"). However, as trimmed nucleotides can potentially be replaced by identical N region nucleotides during the process, the observed "output" represents a <it>biased </it>estimate of the "true trimming process."</p> <p>Results</p> <p>A probabilistic approach based on an analysis of the standardized tool "output" is proposed to infer the probability distribution of the "true trimmming process" and to provide plausible biological hypotheses explaining this process. We collated a benchmark dataset of TR alpha (TRA) and TR gamma (TRG) V-J rearranged sequences and junctions analysed with IMGT/V-QUEST and IMGT/JunctionAnalysis, the nucleotide sequence analysis tools from IMGT<sup>®</sup>, the international ImMunoGeneTics information system<sup>®</sup>, <url>http://imgt.cines.fr</url>. The standardized description of the tool output is based on the IMGT-ONTOLOGY axioms and concepts. We propose a simple first-order model that attempts to transform the observed "output" probability distribution into an estimate closer to the "true trimming process" probability distribution. We use this estimate to test the hypothesis that Poisson processes are involved in trimming. This hypothesis was not rejected at standard confidence levels for three of the four trimming processes: TRAV, TRAJ and TRGV.</p> <p>Conclusion</p> <p>By using trimming of rearranged TR genes as a benchmark, we show that a probabilistic approach, applied to IMGT<sup>® </sup>standardized tool "outputs" opens the way to plausible hypotheses on the events involved in the "true trimming process" and eventually to an exact quantification of trimming itself. With increasing high-throughput of standardized immunogenetics data, similar probabilistic approaches will improve understanding of processes so far only characterized by the "output" of standardized tools.</p
    corecore