5 research outputs found

    Introduction to Multiprocessor I/O Architecture

    No full text
    The computational performance of multiprocessors continues to improve by leaps and bounds, fueled in part by rapid improvements in processor and interconnection technology. I/O performance thus becomes ever more critical, to avoid becoming the bottleneck of system performance. In this paper we provide an introduction to I/O architectural issues in multiprocessors, with a focus on disk subsystems. While we discuss examples from actual architectures and provide pointers to interesting research in the literature, we do not attempt to provide a comprehensive survey. We concentrate on a study of the architectural design issues, and the effects of different design alternatives

    Structure-based discovery of opioid analgesics with reduced side effects

    No full text
    Morphine is an alkaloid from the opium poppy used to treat pain. The potentially lethal side effects of morphine and related opioids—which include fatal respiratory depression—are thought to be mediated by μ-opioid-receptor (μOR) signalling through the β-arrestin pathway or by actions at other receptors. Conversely, G-protein μOR signalling is thought to confer analgesia. Here we computationally dock over 3 million molecules against the μOR structure and identify new scaffolds unrelated to known opioids. Structure-based optimization yields PZM21—a potent G(i) activator with exceptional selectivity for μOR and minimal β-arrestin-2 recruitment. Unlike morphine, PZM21 is more efficacious for the affective component of analgesia versus the reflexive component and is devoid of both respiratory depression and morphine-like reinforcing activity in mice at equi-analgesic doses. PZM21 thus serves as both a probe to disentangle μOR signalling and a therapeutic lead that is devoid of many of the side effects of current opioids

    Energy Transduction in Biological Membranes

    No full text
    corecore