7,680 research outputs found

    A small segmented oscillating water column using a savonius rotor turbine

    Full text link
    This paper outlines a project which addresses the use of a small segmented oscillating water column with three sections. The turbine utilises cascaded Savonius rotors (one for each section) and this system is developed and tested for validation of the performance algorithms. It is shown that the systems can be easily described and a system developed that can generate. It would be suitable for a shoreline location such as a harbour wall, where waves are random and not orthogonal to the column. Conversion rates in the region of 20 % are tabulated for the system with an output of 25 W peak. The paper will give a full algorithm for the system while the digest outlines some crucial points with regards to the sizing and operation of the column with respect to the wave frequency and wavelength. The turbine is fully characterized - the generator is a brushless permanent magnet machine connected to a diode bridge rectifier and variable load. © 2008 IEEE

    A Review of Object Detection Models based on Convolutional Neural Network

    Full text link
    Convolutional Neural Network (CNN) has become the state-of-the-art for object detection in image task. In this chapter, we have explained different state-of-the-art CNN based object detection models. We have made this review with categorization those detection models according to two different approaches: two-stage approach and one-stage approach. Through this chapter, it has shown advancements in object detection models from R-CNN to latest RefineDet. It has also discussed the model description and training details of each model. Here, we have also drawn a comparison among those models.Comment: 17 pages, 11 figures, 1 tabl

    Impact of Tail Loss on the Behaviour and Locomotor Performance of Two Sympatric Lampropholis Skink Species

    Get PDF
    Caudal autotomy is an anti-predator behaviour that is used by many lizard species. Although there is an immediate survival benefit, the subsequent absence of the tail may inhibit locomotor performance, alter activity and habitat use, and increase the individuals' susceptibility to future predation attempts. We used laboratory experiments to examine the impact of tail autotomy on locomotor performance, activity and basking site selection in two lizard species, the delicate skink (Lampropholis delicata) and garden skink (L. guichenoti), that occur sympatrically throughout southeastern Australia and are exposed to an identical suite of potential predators. Post-autotomy tail movement did not differ between the two Lampropholis species, although a positive relationship between the shed tail length and distance moved, but not the duration of movement, was observed. Tail autotomy resulted in a substantial decrease in sprint speed in both species (28–39%), although this impact was limited to the optimal performance temperature (30°C). Although L. delicata was more active than L. guichenoti, tail autotomy resulted in decreased activity in both species. Sheltered basking sites were preferred over open sites by both Lampropholis species, although this preference was stronger in L. delicata. Caudal autotomy did not alter the basking site preferences of either species. Thus, both Lampropholis species had similar behavioural responses to autotomy. Our study also indicates that the impact of tail loss on locomotor performance may be temperature-dependent and highlights that future studies should be conducted over a broad thermal range

    Simulation-based reachability analysis for nonlinear systems using componentwise contraction properties

    Full text link
    A shortcoming of existing reachability approaches for nonlinear systems is the poor scalability with the number of continuous state variables. To mitigate this problem we present a simulation-based approach where we first sample a number of trajectories of the system and next establish bounds on the convergence or divergence between the samples and neighboring trajectories. We compute these bounds using contraction theory and reduce the conservatism by partitioning the state vector into several components and analyzing contraction properties separately in each direction. Among other benefits this allows us to analyze the effect of constant but uncertain parameters by treating them as state variables and partitioning them into a separate direction. We next present a numerical procedure to search for weighted norms that yield a prescribed contraction rate, which can be incorporated in the reachability algorithm to adjust the weights to minimize the growth of the reachable set

    The Pure Virtual Braid Group Is Quadratic

    Full text link
    If an augmented algebra K over Q is filtered by powers of its augmentation ideal I, the associated graded algebra grK need not in general be quadratic: although it is generated in degree 1, its relations may not be generated by homogeneous relations of degree 2. In this paper we give a sufficient criterion (called the PVH Criterion) for grK to be quadratic. When K is the group algebra of a group G, quadraticity is known to be equivalent to the existence of a (not necessarily homomorphic) universal finite type invariant for G. Thus the PVH Criterion also implies the existence of such a universal finite type invariant for the group G. We apply the PVH Criterion to the group algebra of the pure virtual braid group (also known as the quasi-triangular group), and show that the corresponding associated graded algebra is quadratic, and hence that these groups have a (not necessarily homomorphic) universal finite type invariant.Comment: 53 pages, 15 figures. Some clarifications added and inaccuracies corrected, reflecting suggestions made by the referee of the published version of the pape

    Clinical implications of increased lymph vessel density in the lymphatic metastasis of early-stage invasive cervical carcinoma: a clinical immunohistochemical method study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cervical cancer is the most common malignant gynecological cancer, and lymphatic metastasis can occur in the early stage of tumor growth. Lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1), a marker for lymphatic endothelium, provides powerful tools for studying tumor lymphangiogenesis. The purpose of this study is to investigate the clinical implications of lymphangiogenesis in the metastasis of early-stage invasive cervical carcinoma.</p> <p>Methods</p> <p>We used immunohistochemical (IHC) staining with the antibody against LYVE-1 to measure lymph vessel density in 41 cases of early-stage invasive cervical carcinoma and 12 cases of normal cervical samples. We then analyzed the correlation between lymph vessel density and clinicopathological features of the tumors.</p> <p>Results</p> <p>(1) The majority of peritumoral lymphatics were enlarged, dilated, and irregular. In contrast, intratumoral lymph vessels were small and collapsed. The peritumoral lymphatic vessel density (PLVD) was significantly higher than the intratumoral lymphatic vessel density (ILVD) (<it>P </it>< 0.01). (2) Both ILVD and PLVD were significantly higher than the LVD of the control cervixes (<it>P </it>< 0.01). (3) Both ILVD and PLVD were significantly associated with lymph node metastasis (ILVD, <it>P </it>< 0.05; PLVD, <it>P </it>< 0.01) and lymphatic vessel invasion (ILVD, <it>P </it>< 0.05; PLVD, <it>P </it>< 0.01). Both the ILVD and PLVD in patients with histological grade HG2 and HG3 were significantly higher than those with HG1 (<it>P </it>< 0.05).</p> <p>Conclusion</p> <p>Tumor lymphangiogenesis in early-stage invasive cervical carcinoma may play an important role in the process of lymphatic metastasis.</p

    Multifunctional Biocomposites Based on Polyhydroxyalkanoate and Graphene/Carbon Nanofiber Hybrids for Electrical and Thermal Applications

    Get PDF
    Most polymers are long-lasting and produced from monomers derived from fossil fuel sources. Bio-based and/or biodegradable plastics have been proposed as a sustainable alternative. Amongst those available, polyhydroxyalkanoate (PHA) shows great potential across a large variety of applications but is currently limited to packaging, cosmetics and tissue engineering due to its relatively poor physical properties. An expansion of its uses can be accomplished by developing nanocomposites where PHAs are used as the polymer matrix. Herein, a PHA biopolyester was melt blended with graphene nanoplatelets (GNPs) or with a 1:1 hybrid mixture of GNPs and carbon nanofibers (CNFs). The resulting nanocomposites exhibited enhanced thermal stability while their Young's modulus roughly doubled compared to pure PHA. The hybrid nanocomposites percolated electrically at lower nanofiller loadings compared to the GNP-PHA system. The electrical conductivity at 15 wt.% loading was ~ 6 times higher than the GNP-based sample. As a result, the electromagnetic interference shielding performance of the hybrid material was around 50% better than the pure GNPs nanocomposites, exhibiting shielding effectiveness above 20 dB, which is the threshold for common commercial applications. The thermal conductivity increased significantly for both types of bio-nanocomposites and reached values around 5 W K-1 m-1 with the hybrid-based material displaying the best performance. Considering the solvent-free and industrially compatible production method, the proposed multifunctional materials are promising to expand the range of application of PHAs and increase the environmental sustainability of the plastic and plastic electronics industry.Comment: 26 page

    Homochirality and the need of energy

    Full text link
    The mechanisms for explaining how a stable asymmetric chemical system can be formed from a symmetric chemical system, in the absence of any asymmetric influence other than statistical fluctuations, have been developed during the last decades, focusing on the non-linear kinetic aspects. Besides the absolute necessity of self-amplification processes, the importance of energetic aspects is often underestimated. Going down to the most fundamental aspects, the distinction between a single object -- that can be intrinsically asymmetric -- and a collection of objects -- whose racemic state is the more stable one -- must be emphasized. A system of strongly interacting objects can be described as one single object retaining its individuality and a single asymmetry; weakly or non-interacting objects keep their own individuality, and are prone to racemize towards the equilibrium state. In the presence of energy fluxes, systems can be maintained in an asymmetric non-equilibrium steady-state. Such dynamical systems can retain their asymmetry for times longer than their racemization time.Comment: 8 pages, 7 figures, submitted to Origins of Life and Evolution of Biosphere

    Mitochondrial Ca(2+) uptake by the voltage-dependent anion channel 2 regulates cardiac rhythmicity.

    Get PDF
    Tightly regulated Ca(2+) homeostasis is a prerequisite for proper cardiac function. To dissect the regulatory network of cardiac Ca(2+) handling, we performed a chemical suppressor screen on zebrafish tremblor embryos, which suffer from Ca(2+) extrusion defects. Efsevin was identified based on its potent activity to restore coordinated contractions in tremblor. We show that efsevin binds to VDAC2, potentiates mitochondrial Ca(2+) uptake and accelerates the transfer of Ca(2+) from intracellular stores into mitochondria. In cardiomyocytes, efsevin restricts the temporal and spatial boundaries of Ca(2+) sparks and thereby inhibits Ca(2+) overload-induced erratic Ca(2+) waves and irregular contractions. We further show that overexpression of VDAC2 recapitulates the suppressive effect of efsevin on tremblor embryos whereas VDAC2 deficiency attenuates efsevin\u27s rescue effect and that VDAC2 functions synergistically with MCU to suppress cardiac fibrillation in tremblor. Together, these findings demonstrate a critical modulatory role for VDAC2-dependent mitochondrial Ca(2+) uptake in the regulation of cardiac rhythmicity

    Vehicle Trajectories from Unlabeled Data through Iterative Plane Registration

    Get PDF
    One of the most complex aspects of autonomous driving concerns understanding the surrounding environment. In particular, the interest falls on detecting which agents are populating it and how they are moving. The capacity to predict how these may act in the near future would allow an autonomous vehicle to safely plan its trajectory, minimizing the risks for itself and others. In this work we propose an automatic trajectory annotation method exploiting an Iterative Plane Registration algorithm based on homographies and semantic segmentations. The output of our technique is a set of holistic trajectories (past-present-future) paired with a single image context, useful to train a predictive model
    • …
    corecore