8,557 research outputs found
A small segmented oscillating water column using a savonius rotor turbine
This paper outlines a project which addresses the use of a small segmented oscillating water column with three sections. The turbine utilises cascaded Savonius rotors (one for each section) and this system is developed and tested for validation of the performance algorithms. It is shown that the systems can be easily described and a system developed that can generate. It would be suitable for a shoreline location such as a harbour wall, where waves are random and not orthogonal to the column. Conversion rates in the region of 20 % are tabulated for the system with an output of 25 W peak. The paper will give a full algorithm for the system while the digest outlines some crucial points with regards to the sizing and operation of the column with respect to the wave frequency and wavelength. The turbine is fully characterized - the generator is a brushless permanent magnet machine connected to a diode bridge rectifier and variable load. © 2008 IEEE
A Review of Object Detection Models based on Convolutional Neural Network
Convolutional Neural Network (CNN) has become the state-of-the-art for object
detection in image task. In this chapter, we have explained different
state-of-the-art CNN based object detection models. We have made this review
with categorization those detection models according to two different
approaches: two-stage approach and one-stage approach. Through this chapter, it
has shown advancements in object detection models from R-CNN to latest
RefineDet. It has also discussed the model description and training details of
each model. Here, we have also drawn a comparison among those models.Comment: 17 pages, 11 figures, 1 tabl
Simulation-based reachability analysis for nonlinear systems using componentwise contraction properties
A shortcoming of existing reachability approaches for nonlinear systems is
the poor scalability with the number of continuous state variables. To mitigate
this problem we present a simulation-based approach where we first sample a
number of trajectories of the system and next establish bounds on the
convergence or divergence between the samples and neighboring trajectories. We
compute these bounds using contraction theory and reduce the conservatism by
partitioning the state vector into several components and analyzing contraction
properties separately in each direction. Among other benefits this allows us to
analyze the effect of constant but uncertain parameters by treating them as
state variables and partitioning them into a separate direction. We next
present a numerical procedure to search for weighted norms that yield a
prescribed contraction rate, which can be incorporated in the reachability
algorithm to adjust the weights to minimize the growth of the reachable set
The Pure Virtual Braid Group Is Quadratic
If an augmented algebra K over Q is filtered by powers of its augmentation
ideal I, the associated graded algebra grK need not in general be quadratic:
although it is generated in degree 1, its relations may not be generated by
homogeneous relations of degree 2. In this paper we give a sufficient criterion
(called the PVH Criterion) for grK to be quadratic. When K is the group algebra
of a group G, quadraticity is known to be equivalent to the existence of a (not
necessarily homomorphic) universal finite type invariant for G. Thus the PVH
Criterion also implies the existence of such a universal finite type invariant
for the group G. We apply the PVH Criterion to the group algebra of the pure
virtual braid group (also known as the quasi-triangular group), and show that
the corresponding associated graded algebra is quadratic, and hence that these
groups have a (not necessarily homomorphic) universal finite type invariant.Comment: 53 pages, 15 figures. Some clarifications added and inaccuracies
corrected, reflecting suggestions made by the referee of the published
version of the pape
Crude incidence in two-phase designs in the presence of competing risks.
BackgroundIn many studies, some information might not be available for the whole cohort, some covariates, or even the outcome, might be ascertained in selected subsamples. These studies are part of a broad category termed two-phase studies. Common examples include the nested case-control and the case-cohort designs. For two-phase studies, appropriate weighted survival estimates have been derived; however, no estimator of cumulative incidence accounting for competing events has been proposed. This is relevant in the presence of multiple types of events, where estimation of event type specific quantities are needed for evaluating outcome.MethodsWe develop a non parametric estimator of the cumulative incidence function of events accounting for possible competing events. It handles a general sampling design by weights derived from the sampling probabilities. The variance is derived from the influence function of the subdistribution hazard.ResultsThe proposed method shows good performance in simulations. It is applied to estimate the crude incidence of relapse in childhood acute lymphoblastic leukemia in groups defined by a genotype not available for everyone in a cohort of nearly 2000 patients, where death due to toxicity acted as a competing event. In a second example the aim was to estimate engagement in care of a cohort of HIV patients in resource limited setting, where for some patients the outcome itself was missing due to lost to follow-up. A sampling based approach was used to identify outcome in a subsample of lost patients and to obtain a valid estimate of connection to care.ConclusionsA valid estimator for cumulative incidence of events accounting for competing risks under a general sampling design from an infinite target population is derived
Light dark matter in the NMSSM: upper bounds on direct detection cross sections
In the Next-to-Minimal Supersymmetric Standard Model, a bino-like LSP can be
as light as a few GeV and satisfy WMAP constraints on the dark matter relic
density in the presence of a light CP-odd Higgs scalar. We study upper bounds
on the direct detection cross sections for such a light LSP in the mass range
2-20 GeV in the NMSSM, respecting all constraints from B-physics and LEP. The
OPAL constraints on e^+ e^- -> \chi^0_1 \chi^0_i (i > 1) play an important role
and are discussed in some detail. The resulting upper bounds on the
spin-independent and spin-dependent nucleon cross sections are ~ 10^{-42}
cm^{-2} and ~ 4\times 10^{-40} cm^{-2}, respectively. Hence the upper bound on
the spin-independent cross section is below the DAMA and CoGeNT regions, but
could be compatible with the two events observed by CDMS-II.Comment: 17 pages, 3 figure
Closed-loop separation control over a sharp edge ramp using Genetic Programming
We experimentally perform open and closed-loop control of a separating
turbulent boundary layer downstream from a sharp edge ramp. The turbulent
boundary layer just above the separation point has a Reynolds number
based on momentum thickness. The goal of the
control is to mitigate separation and early re-attachment. The forcing employs
a spanwise array of active vortex generators. The flow state is monitored with
skin-friction sensors downstream of the actuators. The feedback control law is
obtained using model-free genetic programming control (GPC) (Gautier et al.
2015). The resulting flow is assessed using the momentum coefficient, pressure
distribution and skin friction over the ramp and stereo PIV. The PIV yields
vector field statistics, e.g. shear layer growth, the backflow area and vortex
region. GPC is benchmarked against the best periodic forcing. While open-loop
control achieves separation reduction by locking-on the shedding mode, GPC
gives rise to similar benefits by accelerating the shear layer growth.
Moreover, GPC uses less actuation energy.Comment: 24 pages, 24 figures, submitted to Experiments in Fluid
Homochirality and the need of energy
The mechanisms for explaining how a stable asymmetric chemical system can be
formed from a symmetric chemical system, in the absence of any asymmetric
influence other than statistical fluctuations, have been developed during the
last decades, focusing on the non-linear kinetic aspects. Besides the absolute
necessity of self-amplification processes, the importance of energetic aspects
is often underestimated. Going down to the most fundamental aspects, the
distinction between a single object -- that can be intrinsically asymmetric --
and a collection of objects -- whose racemic state is the more stable one --
must be emphasized. A system of strongly interacting objects can be described
as one single object retaining its individuality and a single asymmetry; weakly
or non-interacting objects keep their own individuality, and are prone to
racemize towards the equilibrium state. In the presence of energy fluxes,
systems can be maintained in an asymmetric non-equilibrium steady-state. Such
dynamical systems can retain their asymmetry for times longer than their
racemization time.Comment: 8 pages, 7 figures, submitted to Origins of Life and Evolution of
Biosphere
Inspiratory muscle warm-up does not improve cycling time-trial performance
Purpose: This study examined the effects of an active cycling warm-up, with and without the addition of an inspiratory muscle warm-up (IMW), on 10-km cycling time-trial performance
- …
