17 research outputs found

    Rapid and Accurate Assessment of GPCR-Ligand Interactions Using the Fragment Molecular Orbital-Based Density-Functional Tight-Binding Method

    Get PDF
    The reliable and precise evaluation of receptor–ligand interactions and pair-interaction energy is an essential element of rational drug design. While quantum mechanical (QM) methods have been a promising means by which to achieve this, traditional QM is not applicable for large biological systems due to its high computational cost. Here, the fragment molecular orbital (FMO) method has been used to accelerate QM calculations, and by combining FMO with the density-functional tight-binding (DFTB) method we are able to decrease computational cost 1000 times, achieving results in seconds, instead of hours. We have applied FMO-DFTB to three different GPCR–ligand systems. Our results correlate well with site directed mutagenesis data and findings presented in the published literature, demonstrating that FMO-DFTB is a rapid and accurate means of GPCR–ligand interactions

    Characterising Inter-helical Interactions of G Protein-Coupled Receptors with the Fragment Molecular Orbital Method

    Get PDF
    G-protein coupled receptors (GPCRs) are the largest superfamily of membrane proteins, regulating almost every aspect of cellular activity and serving as key targets for drug discovery. We have identified an accurate and reliable computational method to characterise the strength and chemical nature of the inter-helical interactions between the residues of transmembrane (TM) domains during different receptor activation states, something that cannot be characterised solely by visual inspection of structural information. Using the fragment molecular orbital (FMO) quantum mechanics method to analyse 35 crystal structures representing different branches of the class A GPCR family, we have identified 69 topologically-equivalent TM residues that form a consensus network of 51 inter-TM interactions, providing novel results that are consistent with and help to rationalise experimental data. This discovery establishes a comprehensive picture of how defined molecular forces govern specific inter-helical interactions which, in turn, support the structural stability, ligand binding and activation of GPCRs

    Using the fragment molecular orbital method to investigate agonist-orexin-2 receptor interactions

    No full text
    The understanding of binding interactions between any protein and a small molecule plays a key role in the rationalization of affinity and selectivity and is essential for an efficient structure-based drug discovery (SBDD) process. Clearly, to begin SBDD, a structure is needed, and although there has been fantastic progress in solving G-protein-coupled receptor (GPCR) crystal structures, the process remains quite slow and is not currently feasible for every GPCR or GPCR-ligand complex. This situation significantly limits the ability of X-ray crystallography to impact the drug discovery process for GPCR targets in 'real-time' and hence there is still a need for other practical and cost-efficient alternatives. We present here an approach that integrates our previously described hierarchical GPCR modelling protocol (HGMP) and the fragment molecular orbital (FMO) quantum mechanics (QM) method to explore the interactions and selectivity of the human orexin-2 receptor (OX2R) and its recently discovered nonpeptidic agonists. HGMP generates a 3D model of GPCR structures and its complexes with small molecules by applying a set of computational methods. FMO allowsab initioapproaches to be applied to systems that conventional QM methods would find challenging. The key advantage of FMO is that it can reveal information on the individual contribution and chemical nature of each residue and water molecule to the ligand binding that normally would be difficult to detect without QM. We illustrate how the combination of both techniques provides a practical and efficient approach that can be used to analyse the existing structure-function relationships (SAR) and to drive forward SBDD in a real-world example for which there is no crystal structure of the complex available

    The fragment molecular orbital method reveals new insight into the chemical nature of GPCR-ligand interactions

    No full text
    Our interpretation of ligand–protein interactions is often informed by high-resolution structures, which represent the cornerstone of structure-based drug design. However, visual inspection and molecular mechanics approaches cannot explain the full complexity of molecular interactions. Quantum Mechanics approaches are often too computationally expensive, but one method, Fragment Molecular Orbital (FMO), offers an excellent compromise and has the potential to reveal key interactions that would otherwise be hard to detect. To illustrate this, we have applied the FMO method to 18 Class A GPCR–ligand crystal structures, representing different branches of the GPCR genome. Our work reveals key interactions that are often omitted from structure-based descriptions, including hydrophobic interactions, nonclassical hydrogen bonds, and the involvement of backbone atoms. This approach provides a more comprehensive picture of receptor–ligand interactions than is currently used and should prove useful for evaluation of the chemical nature of ligand binding and to support structure-based drug design

    Characterising GPCR–ligand interactions using a fragment molecular orbital-based approach

    No full text
    There has been fantastic progress in solving GPCR crystal structures. However, the ability of X-ray crystallography to guide the drug discovery process for GPCR targets is limited by the availability of accurate tools to explore receptor-ligand interactions. Visual inspection and molecular mechanics approaches cannot explain the full complexity of molecular interactions. Quantum mechanical approaches (QM) are often too computationally expensive, but the fragment molecular orbital (FMO) method offers an excellent solution that combines accuracy, speed and the ability to reveal key interactions that would otherwise be hard to detect. Integration of GPCR crystallography or homology modelling with FMO reveals atomistic details of the individual contributions of each residue and water molecule towards ligand binding, including an analysis of their chemical nature
    corecore