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The reliable and precise evaluation of receptor–ligand interac-

tions and pair-interaction energy is an essential element of

rational drug design. While quantum mechanical (QM) methods

have been a promising means by which to achieve this, tradi-

tional QM is not applicable for large biological systems due to

its high computational cost. Here, the fragment molecular

orbital (FMO) method has been used to accelerate QM calcula-

tions, and by combining FMO with the density-functional tight-

binding (DFTB) method we are able to decrease computational

cost 1000 times, achieving results in seconds, instead of hours.

We have applied FMO-DFTB to three different GPCR–ligand sys-

tems. Our results correlate well with site directed mutagenesis

data and findings presented in the published literature, demon-

strating that FMO-DFTB is a rapid and accurate means of

GPCR–ligand interactions. VC 2017 Authors. Journal of Computa-

tional Chemistry Published by Wiley Periodicals, Inc.

DOI: 10.1002/jcc.24850

Introduction

The rationalization of potency and selectivity in the drug discov-

ery process requires an accurate understanding of the binding

interactions between a protein and its ligand.[1] However, visual

inspection and force-field-based molecular mechanics calcula-

tions (MM) cannot always explain the full complexity of the

molecular interactions, in particular CH-p, halogen-p, cation-p,

and nonclassical H-bonds, that play critical roles in receptor–

ligand binding.[2] The use of quantum mechanical (QM) methods

can take into account charge fluctuations and dynamic polariza-

tion, which are essential in assessing molecular interactions.

However, despite the many advantages that QM can bring, tradi-

tional QM methods are not feasible for large biological systems,

such as proteins, due to their high computational cost.

The FMO method[3] accelerates traditional QM methods, by

dividing the system into smaller pieces called fragments and

performing QM calculations on these fragments (Supporting

Information Fig. S1). FMO can be combined[4,5] with a fast QM

method, density-functional tight-binding (DFTB) approach.[6] A

key advantage of FMO is that it can provide the individual

contribution of each residue–ligand pair interaction energy

(PIE) to the total interaction energy (TIE). TIE is a sum of PIEs

for all residues; it is an estimate of the total protein-ligand

binding energy; whereas PIEs are residue contributions to it.

G-protein coupled receptors (GPCRs) are a large and well-

studied family of membrane proteins that comprise the targets

for about 30% of all pharmaceuticals currently on the market.[7,8]

There are over 800 GPCR proteins encoded in the human

genome, but drugs have only been developed against <10% of

these targets. Thus, there is huge potential to expand the

number of targets for which new therapies can be developed. To

develop new drugs, both for novel and for existing targets, it is

essential to understand at a molecular level the interactions that

take place between ligand and GPCR.

We previously illustrated[2] how the FMO-MP2 method can be

applied to several Class A GPCR–ligand crystal structures to

explore receptor–ligand interactions. In this communication, we

have extend our studies of receptor–ligand interactions by

selecting three of these cases and using them to establish the

reliability, speed and utility of FMO-DFTB in comparison with

FMO-MP2. MP2 is thus used as an established reference for vali-

dating DFTB. DFTB is based on a series expansion of electron

density and, as such, can be considered an approximation to

density functional theory (DFT).[6] The cost of performing MP2

calculations of fragments scales as N5, where N is the number of

basis functions in the fragment, due to the transformation of
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two-electron integrals. In contrast, the cost of DFTB is N3, two

orders of magnitude lower, due to the Fock matrix diagonaliza-

tion. Further, MP2 requires an expensive calculation of two-

electron integrals, and the cost of assembling the Fock matrix in

DFTB is low because it is parametrized. Finally, the FMO-specific

electrostatic embedding in DFTB uses point charges whereas

electron densities are used in MP2 calculations.

The three reference systems for this comparison are: (1)

BI167107 in complex with the human b2-Adrenoceptor (PDB

entry 3SN6)[9]; (2) JDTic in complex with the j-opioid receptor

(PDB entry 4DJH)[10]; and, (3) AZD1283 in complex with the

human P2Y12 receptor (PDB entry 4NTJ).[11] We selected these

systems because of the extensive structure activity relationship

(SAR) data available in the literature for these ligands (Sup-

porting Information Tables S2–S4). These analogs of the crystal

ligands were docked into the relevant receptors as described

previously[2] and the TIEs calculated by FMO-DFTB.

By performing calculations on a PC cluster with 32 CPU cores,

we have determined that FMO-DFTB is approximately 1000

times faster than the standard FMO-MP2 approach (Supporting

Information Table S1). FMO-DFTB calculations can be performed

in seconds, being practical for drug discovery projects.

The TIEs values calculated by FMO-DFTB can be compared

with the experimental ligand binding affinities (Fig. 1) and with

TIEs calculated with MP2 (Fig. 2). We observed a significant corre-

lation (r2 >0.66) between the calculated (TIEFMO-DFTB) and the

experimental values (Fig. 1). For 3SN6 and 4NTJ, we observed a

significant correlation (r2 >0.78) between the experimental val-

ues and the corresponding TIEs. In the case of 4DJH, the correla-

tion was lower (r250.66) and may have arisen as a consequence

of the large error margins observed in the experimentally mea-

sured data, as reported in the literature. The high correlation

between calculated and experimental values demonstrates that

FMO-DFTB provides a realistic assessment of TIE and offers addi-

tional insight into structure-based drug design for GPCR targets.

The TIE values computed using FMO-DFTB are in excellent

agreement (r2 >0.90) with the corresponding values calculated

using FMO-MP2 (Fig. 2), demonstrating that the performance of

FMO is not compromised by the speed obtained with FMO-

DFTB. To elaborate the comparison, atomic charges in MP2 and

DFTB are plotted in Supporting Information Figure S2. The good

correlation implies that the electrostatic interaction (a part of

PIE) in the two methods also correlates well; consistently with

the total PIEs, the electrostatic contribution, based on atomic

charges, is smaller in DFTB compared to MP2.

We used FMO-DFTB to calculate individual residue–ligand pair

interaction energies (PIEs) for the three systems (Fig. 3). We con-

sider any interaction with an absolute PIE� 3.0 kcal/mol to be

significant. The water molecules in this work were extracted

from the crystal structures (if resolved) and treated explicitly to

explore their contribution to the receptor–ligand binding.

b2-Adrenoceptor receptor (b2AR) is primarily located in the

heart and the kidney, where it is involved in physiological pro-

cesses including the regulation of heart rate and blood pres-

sure. This first case was used to illustrate how the FMO-DFTB

results can be visualised, namely as a 3D figure (Fig. 3a) or

with the data displayed in a plot (Fig. 3b). FMO-DFTB detected

17 significant interactions in this system. The majority of these

interactions are consistent with literature reports[9] and with

those calculated at MP2 level.[2] Novel interactions with resi-

dues Val114 and Lys305 have been identified using FMO-DFTB.

While no information is available for Lys305, the mutation

from valine to alanine at Val114 has been reported[9] to dis-

rupt the binding of agonists and antagonists. According to

Figure 1. Correlation plots between experimentally measured affinity and TIEFMO-DFTB for 3 systems: a) 3SN6, b) 4DJH, and c) 4NTJ. Computationally

obtained values are shown on the y-axis and experimental values are shown on the x-axis. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 2. Correlation plots between TIEFMO-MP2 (shown on the x-axis) and TIEFMO-DFTB (shown on the y-axis) for the three systems: a) 3SN6, b) 4DJH, and c)

4NTJ. [Color figure can be viewed at wileyonlinelibrary.com]
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this analysis, Val114 forms unusual CH-p bonds.[12] This result

is in agreement with our previous findings[2] where we exten-

sively explored the role of nonclassical interactions, such as

CH-p, in GPCR–ligand binding.

The opioid system controls pain, as well as reward and addic-

tive behaviours. Opioids exert their pharmacological actions

through activation of the three opioid receptors, l (MOR), d
(DOR), and k (KOR). JDTic is a long-acting (“inactivating”) antago-

nist of the KOR, and is highly selective for the l- and d- opioid

receptors and nociceptin receptor. The JDTic-KOR complex is the

first crystal structure of an opioid receptor.[10] FMO-DFTB calcula-

tions highlighted 23 strong interactions (Fig. 3c). These interac-

tions correlate well with the literature, where the selectivity of

JDTic has been rationalized by interactions with residues Val108

and Tyr312.[13] In addition, FMO-DFTB identified much stronger

interactions than those in the literature,[10] including that of

Asp138, highlighting the utility of this method for predicting res-

idues for further experimental study.

The P2Y12 receptor is considered to be one of the most promis-

ing drug targets for antiplatelet therapies. AZD1283 is a novel

P2Y12 antagonist for the treatment of arterial thrombosis and was

recently progressed into human clinical trials. FMO-DFTB identi-

fied 12 relevant interactions for this system (Fig. 3d). These results

are consistent with previous experimental findings.[11] The stron-

gest interaction identified is at Arg256, which is a residue shown

to interact with non-nucleotide antagonists.[14] Interestingly,

P2Y12 receptor signalling has been shown to be impaired in a

patient with an Arg to Gln mutation at position 256.[15]

We have demonstrated that FMO-DFTB is a rapid, accurate and

reliable method for the assessment of receptor–ligand interactions

and TIE calculations. The interactions detected by FMO-DFTB are

consistent with the experimental data and with those detected by

FMO-MP2.[2] The application of FMO-DFTB will be of great utility for

the design and evaluation of new compounds, providing a means

of significantly decreasing the effort and cost of chemical synthesis

needed for drug discovery programs.[16] The high correlation

between receptor-ligand experimentally evaluated affinity and

TIEFMO-DFTB indicates that FMO-DFTB can be used to determine the

binding affinities of new targets and, therefore, provides a means

of accurately predicting experimental outcomes.

Figure 3. FMO-DFTB results for (a) the human b2-Adrenoceptor in complex with BI167107 (PDB entry 3SN6). The carbon atoms of the ligand are shown in

light orange and the receptor residues are colored according to the PIE values calculated by FMO-DFTB (shown by the PIEDFTB bar in the lower right hand

corner of the panel. Nitrogen atoms are shown in blue, oxygen in red, sulphur in yellow and chlorine in light green. Sorted PIE values for GPCR residues

calculated at DFTB and MP2 levels (in green and yellow, respectively) are shown for the b2-adrenoceptor (b), the j-opioid receptor in complex with JDTic

(c), and the human P2Y12 receptor in complex with ASD1283 (d). [Color figure can be viewed at wileyonlinelibrary.com]
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For the first time, it is now possible to perform QM calculations

for protein-ligand complexes in a high throughput manner to

address the needs of processing large amounts of SAR data.

Docked ligands can be refined, rescored, and reranked with FMO-

DFTB in the presence of the surrounded protein and water mole-

cules. In summary, FMO-DFTB possesses the accuracy of much

more expensive methods (FMO-MP2) at a dramatically enhanced

speed, making it a very attractive method to support rational

SBDD against GPCR and other drug targets.

Computational Methods

We applied FMO code[17] version 5.1 distributed inside ab initio

quantum chemistry package GAMESS.[18] We used the third

order DFTB3 method[6] with 3ob parameters,[19,20] and the

Møller–Plesset second order perturbation theory (MP2) and, for

treating solvent effects, we combined both calculations with the

polarizable continuum model (PCM).[4] MP2 was used with the

6–31G* basis set whereas the UFF dispersion model was used for

DFTB3. The structures were taken from the previous study.[2]
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