29 research outputs found
Pedestrian Injury and Human Behaviour: Observing Road-Rule Violations at High-Incident Intersections
Background
Human behaviour is an obvious, yet under-studied factor in pedestrian injury. Behavioural interventions that address rule violations by pedestrians and motorists could potentially reduce the frequency of pedestrian injury. In this study, a method was developed to examine road-rule non-compliance by pedestrians and motorists. The purpose of the study was to examine the potential association between violations made by pedestrians and motorists at signalized intersections, and collisions between pedestrians and motor-vehicles. The underlying hypothesis is that high-incident pedestrian intersections are likely to vary with respect to their aetiology, and thus are likely to require individualized interventions â based on the type and rate of pedestrian and motorist violation.
Methods
High-incident pedestrian injury intersections in Vancouver, Canada were identified using geographic information systems. Road-rule violations by pedestrians and motorists were documented at each incident hotspot by a team of observers at several different time periods during the day.
Results
Approximately 9,000 pedestrians and 18,000 vehicles were observed in total. In total for all observed intersections, over 2000 (21%) pedestrians committed one of the observed pedestrian road-crossing violations, while approximately 1000 (5.9%) drivers committed one of the observed motorist violations. Great variability in road-rule violations was observed between intersections, and also within intersections at different observation periods.
Conclusions
Both motorists and pedestrians were frequently observed committing road-rule violations at signalized intersections, suggesting a potential human behavioural contribution to pedestrian injury at the study sites. These results suggest that each intersection may have unique mechanisms that contribute to pedestrian injury, and may require targeted behavioural interventions. The method described in this study provides the basis for understanding the relationship between violations and pedestrian injury risk at urban intersections. Findings could be applied to targeted prevention campaigns designed to reduce the number of pedestrian injuries at signalized intersections
DNA Methylation in the Human Cerebral Cortex Is Dynamically Regulated throughout the Life Span and Involves Differentiated Neurons
The role of DNA cytosine methylation, an epigenetic regulator of chromatin structure and function, during normal and pathological brain development and aging remains unclear. Here, we examined by MethyLight PCR the DNA methylation status at 50 loci, encompassing primarily 5âČ CpG islands of genes related to CNS growth and development, in temporal neocortex of 125 subjects ranging in age from 17 weeks of gestation to 104 years old. Two psychiatric disease cohortsâdefined by chronic neurodegeneration (Alzheimer's) or lack thereof (schizophrenia)âwere included. A robust and progressive rise in DNA methylation levels across the lifespan was observed for 8/50 loci (GABRA2, GAD1, HOXA1, NEUROD1, NEUROD2, PGR, STK11, SYK) typically in conjunction with declining levels of the corresponding mRNAs. Another 16 loci were defined by a sharp rise in DNA methylation levels within the first few months or years after birth. Disease-associated changes were limited to 2/50 loci in the Alzheimer's cohort, which appeared to reflect an acceleration of the age-related change in normal brain. Additionally, methylation studies on sorted nuclei provided evidence for bidirectional methylation events in cortical neurons during the transition from childhood to advanced age, as reflected by significant increases at 3, and a decrease at 1 of 10 loci. Furthermore, the DNMT3a de novo DNA methyl-transferase was expressed across all ages, including a subset of neurons residing in layers III and V of the mature cortex. Therefore, DNA methylation is dynamically regulated in the human cerebral cortex throughout the lifespan, involves differentiated neurons, and affects a substantial portion of genes predominantly by an age-related increase
Omics-based molecular techniques in oral pathology centred cancer: Prospect and challenges in Africa
: The completion of the human genome project and the accomplished milestones in the human
proteome project; as well as the progress made so far in computational bioinformatics and âbig dataâ processing have
contributed immensely to individualized/personalized medicine in the developed world.At the dawn of precision medicine, various omics-based therapies and bioengineering can now be
applied accurately for the diagnosis, prognosis, treatment, and risk stratifcation of cancer in a manner that was
hitherto not thought possible. The widespread introduction of genomics and other omics-based approaches into
the postgraduate training curriculum of diverse medical and dental specialties, including pathology has improved
the profciency of practitioners in the use of novel molecular signatures in patient management. In addition, intricate
details about disease disparity among diferent human populations are beginning to emerge. This would facilitate the
use of tailor-made novel theranostic methods based on emerging molecular evidences