25 research outputs found

    Impact of Flavonoids on Cellular and Molecular Mechanisms Underlying Age-Related Cognitive Decline and Neurodegeneration

    Get PDF
    Purpose of Review This review summarises the most recent evidence regarding the effects of dietary flavonoids on age-related cognitive decline and neurodegenerative diseases. Recent Findings Recent evidence indicates that plant-derived flavonoids may exert powerful actions on mammalian cognition and protect against the development of age-related cognitive decline and pathological neurodegeneration. The neuroprotective effects of flavonoids have been suggested to be due to interactions with the cellular and molecular architecture of brain regions responsible for memory. Summary Mechanisms for the beneficial effects of flavonoids on age-related cognitive decline and dementia are discussed, including modulating signalling pathways critical in controlling synaptic plasticity, reducing neuroinflammation, promoting vascular effects capable of stimulating new nerve cell growth in the hippocampus, bidirectional interactions with gut microbiota and attenuating the extracellular accumulation of pathological proteins. These processes are known to be important in maintaining optimal neuronal function and preventing age-related cognitive decline and neurodegeneration

    Inhibitory effect of 4-O-methylhonokiol on lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment via inhibition of nuclear factor-kappaB in vitro and in vivo models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroinflammation is important in the pathogenesis and progression of Alzheimer disease (AD). Previously, we demonstrated that lipopolysaccharide (LPS)-induced neuroinflammation caused memory impairments. In the present study, we investigated the possible preventive effects of 4-<it>O</it>-methylhonokiol, a constituent of <it>Magnolia officinalis</it>, on memory deficiency caused by LPS, along with the underlying mechanisms.</p> <p>Methods</p> <p>We investigated whether 4-<it>O</it>-methylhonokiol (0.5 and 1 mg/kg in 0.05% ethanol) prevents memory dysfunction and amyloidogenesis on AD model mice by intraperitoneal LPS (250 μg/kg daily 7 times) injection. In addition, LPS-treated cultured astrocytes and microglial BV-2 cells were investigated for anti-neuroinflammatory and anti-amyloidogenic effect of 4-<it>O</it>-methylhonkiol (0.5, 1 and 2 μM).</p> <p>Results</p> <p>Oral administration of 4-<it>O</it>-methylhonokiol ameliorated LPS-induced memory impairment in a dose-dependent manner. In addition, 4-<it>O</it>-methylhonokiol prevented the LPS-induced expression of inflammatory proteins; inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as activation of astrocytes (expression of glial fibrillary acidic protein; GFAP) in the brain. In <it>in vitro </it>study, we also found that 4-<it>O</it>-methylhonokiol suppressed the expression of iNOS and COX-2 as well as the production of reactive oxygen species, nitric oxide, prostaglandin E<sub>2</sub>, tumor necrosis factor-α, and interleukin-1β in the LPS-stimulated cultured astrocytes. 4-<it>O</it>-methylhonokiol also inhibited transcriptional and DNA binding activity of NF-κB via inhibition of IκB degradation as well as p50 and p65 translocation into nucleus of the brain and cultured astrocytes. Consistent with the inhibitory effect on neuroinflammation, 4-<it>O</it>-methylhonokiol inhibited LPS-induced Aβ<sub>1-42 </sub>generation, β- and γ-secretase activities, and expression of amyloid precursor protein (APP), BACE1 and C99 as well as activation of astrocytes and neuronal cell death in the brain, in cultured astrocytes and in microglial BV-2 cells.</p> <p>Conclusion</p> <p>These results suggest that 4-<it>O</it>-methylhonokiol inhibits LPS-induced amyloidogenesis via anti-inflammatory mechanisms. Thus, 4-<it>O</it>-methylhonokiol can be a useful agent against neuroinflammation-associated development or the progression of AD.</p

    Metopic synostosis

    Get PDF
    Premature closure of the metopic suture results in a growth restriction of the frontal bones, which leads to a skull malformation known as trigonocephaly. Over the course of recent decades, its incidence has been rising, currently making it the second most common type of craniosynostosis. Treatment consists of a cranioplasty, usually preformed before the age of 1 year. Metopic synostosis is linked with an increased level of neurodevelopmental delays. Theories on the etiology of these delays range from a reduced volume of the anterior cranial fossa to intrinsic malformations of the brain. This paper aims to provide an overview of this entity by giving an update on the epidemiology, etiology, evolution of treatment, follow-up, and neurodevelopment of metopic synostosis
    corecore