19 research outputs found
Efimov effect in quantum magnets
Physics is said to be universal when it emerges regardless of the underlying
microscopic details. A prominent example is the Efimov effect, which predicts
the emergence of an infinite tower of three-body bound states obeying discrete
scale invariance when the particles interact resonantly. Because of its
universality and peculiarity, the Efimov effect has been the subject of
extensive research in chemical, atomic, nuclear and particle physics for
decades. Here we employ an anisotropic Heisenberg model to show that collective
excitations in quantum magnets (magnons) also exhibit the Efimov effect. We
locate anisotropy-induced two-magnon resonances, compute binding energies of
three magnons and find that they fit into the universal scaling law. We propose
several approaches to experimentally realize the Efimov effect in quantum
magnets, where the emergent Efimov states of magnons can be observed with
commonly used spectroscopic measurements. Our study thus opens up new avenues
for universal few-body physics in condensed matter systems.Comment: 7 pages, 5 figures; published versio
Implication of water activity on the bioactive compounds and physical properties of cocona (Solanum sessiliflorum Dunal) chips
The effect of water activity on the quality parameters
of cocona chips obtained by a combined osmotic dehydration
and hot air-drying method has been studied. Applying
the combined treatment resulted in a product with 0.055±
0.005 g water/g product in 4.3 h of drying. Although this
treatment caused a significant decrease (p<0.05) in the bioactive
compounds analyzed, the antioxidant activity of the samples
remained stable compared to fresh fruit. The applied treatment
permitted the development of a sweet, crispy snack with
acceptable optical and mechanical properties. To evaluate the
stability of the cocona chips during storage, the water sorption
behaviour (20 °C) and the relationship between the water content,
water activity and the glass transition were also studied.
Results showed that in order to ensure the functional quality
preservation of cocona chips during long-term storage and
avoid the crispness loss, the glassy state of the amorphous
matrix must be guaranteed.The authors thank the Universidad Politecnica de Valencia for the financial support given throughout the Projects ADSIDEO-COOPERACION 2010 "Adaptacion de procesos de secado para favorecer la comercializacion de superfrutas de origen colombiano" and ADSIDEO-COOPERACION 2012 "Contribucion a la mejora del estado nutricional en poblaciones infantiles rurales del departamento del Choco a partir de materias primas de uso tradicional".Agudelo-Sterling, C.; Igual Ramo, M.; Moraga Ballesteros, G.; MartĂnez Navarrete, N. (2015). Implication of water activity on the bioactive compounds and physical properties of cocona (Solanum sessiliflorum Dunal) chips. Food and Bioprocess Technology. 9(1):167-171. doi:10.1007/s11947-015-1611-zS16717191Acevedo, N., Schebor, C., & Buera, M. P. (2006). Water-solids interactions, matrix structural properties and the rate of non-enzymatic browning. Journal of Food Engineering, 77, 1108–1115.Ahmed, J., & Ramaswany, H. S. (2006). Physico-chemical properties of commercial date pastes (Phoenix dactylifera). Journal of Food Engineering, 76, 348–352.Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of American Chemistry Society, 60, 309–320.Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a theory of the van de Waals adsorption of gases. Journal of American Chemistry Society, 62, 1723–1732.Cardona Jaramillo, J. (2011). Estudio de metabolitos fijos y volátiles en tres morfotipos de cocona (Solanum sessillioflorum Dunal) procedentes del departamento del Guaviare. Tesis de grado para optar al tĂtulo de Master en Ciencias-QuĂmica. Colombia: UNAL.Cardoso, P. C., Tomazini, A. P. B., Stringheta, P. C., Ribeiro, S. M. R., & Pinheiro-Sant’Ana, H. M. (2011). Vitamin C and carotenoids in organic and conventional fruits grown in Brazil. Food chemistry, 126, 411–416.Cen, H., Bao, Y., He, Y., & Sun, D. W. (2007). Visible and near infrared spectroscopy for rapid detection of citric and tartaric acids in orange juice. Journal of Food Engineering, 82, 253–260.Chen, J. P., Tai, C. Y., & Chen, B. H. (2007). Effects of different drying treatments on the stability of carotenoids in Taiwanese mango (Mangifera indica L.). Food Chemistry, 100, 1005–1010.Contreras, C., MartĂn-Esparza, M. E., MartĂnez-Navarrete, N., & Chiralt, A. (2006). Influence of osmotic pre-treatment and microwave application on properties of air dried strawberry related to structural changes. European Food Research and Technology, 224, 499–504.Contreras-CalderĂłn, J., CalderĂłn-Jaimes, L., Guerra-Hernández, E., & GarcĂa-Villanova, B. (2011). Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food Research International, 44, 2047–2053.De la Rosa, L., Alvarez-Parrilla, E., & González-Aguilar, G. (2010). Fruit and vegetable phytochemicals chemistry, nutritional value, and stability. Iowa: Blackwell Publishing.Deepa, N., Kaura, C., George, B., Singh, B., & Kapoor, H. (2007). Antioxidant constituents in some sweet pepper (Capsicum annuum L.) genotypes during maturity. LWT: Food Science and Technology, 40(1), 121–129.DĂaz Correa, J., & Cancino Chávez, K. (2007). Estudio de la cinĂ©tica de degradaciĂłn tĂ©rmica de textura y su aplicaciĂłn en el tratamiento tĂ©rmico de la cocona (Solanum sessiliflorun Dunal) en almĂbar. Revista IngenierĂa UC, 14(3), 57–67.Falade, K. O., Igbeka, J. C., & Ayanwuyi, F. A. (2007). Kinetics of mass transfer, and colour changes during osmotic dehydration of watermelon. Journal of Food Engineering, 80, 979–985.Gabas, A. L., Telis, V. R. N., Sobral, P. J. A., & Telis-Romero, J. (2007). Effect of maltodextrin and arabic gum in water vapor sorption thermodynamic properties of vacuum dried pineapple pulp powder. Journal of Food Engineering, 82, 246–252.GarcĂa, C. C., Mauro, M. A., & Kimura, M. (2007). Kinetics of osmotic dehydration and air-drying of pumpkins (Cucurbita mostacha). Journal of Food Engineering, 82, 284–291.GarcĂa-MartĂnez, E., MartĂnez-MonzĂł, J., Camacho, M. M., & MartĂnez-Navarrete, N. (2002). Characterisation of reused osmotic solution as ingredient in new product formulation. Food Research International, 35, 307–313.Gordon, M., & Taylor, J. S. (1952). Ideal copolymers and second-order transitions of synthetics rubbers. I. Non-crystalline copolymers. Journal of Applied Chemistry, 2, 493–500.Greenspan, L. (1977). Humidity fixed point of binary saturated aqueous solutions. Journal of Research of the National Bureau of Standards, 81, 89–96.Hutchings, J. B. (1999). Food color and appearance. Gaithersburg, MD: Aspen Publishers.Igual, M., CastellĂł, M. L., Roda, E., & Ortolá, M. D. (2011). Development of hot-air dried cut persimmon. International Journal of Food Engineering, 7(5), 1556–3758.Igual. M, GarcĂa-MartĂnez, M. E. MartĂn-Esparza, N. & MartĂnez-Navarrete. (2012). Effect of processing on the drying kinetics and functional value of dried apricot. Food Research International, 47, 284–290.Krokida, M., & Maroulis, Z. (2000). Quality changes during drying of food materials. In A. S. Mujumdar (Ed.), Drying technology in agriculture and food sciences (pp. 61–98). Enfield, NH: Science Publishers.Labuza, T. P. (1984). Moisture sorption: practical aspects of isotherm measurement and use. St. Paul, MN: AACC International Publishing.Maltini. E, Torreggiani. D, Venir. E, & Bertolo. (2003). Water activity and the preservation of plant foods. Food Chemistry, 82, 79–86.Manzocco, L., Calligaris, S., Mastrocola, D., Nicoli, M. C., & Lerici, C. R. (2000). Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends in Food Science and Technology, 11, 340–346.MartĂnez-Navarrete, N., Moraga, G., Talens, P., & Chiralt, A. (2004). Water sorption and the plasticization effect in wafers. International Journal of Food Science and Technology, 69, 555–562.Miranda, M., Vega-Gálvez, A., Lopez, J., Parada, G., Sanders, M., Aranda, M., Uribe, E., & Di Scalad, K. (2010). Impact of air-drying temperature on nutritional properties, total phenolic content and antioxidant capacity of quinoa seeds (Chenopodium quinoa Willd.). Industrial Crops and Products, 32, 258–263.Moraga, G., MartĂnez-Navarrete, N., & Chiralt, A. (2004). Water sorption isotherms and glass transition in strawberries: influence of pretreatment. Journal of Food Engineering, 62, 315–321.Moraga, G., MartĂnez-Navarrete, N., & Chiralt, A. (2006). Water sorption isotherms and phase transitions in kiwifruit. Journal of Food Engineering, 72, 147–156.Moraga, G., Igual, M., GarcĂa-MartĂnez, E., Mosquera, L. H., & MartĂnez-Navarrete, N. (2012). Effect of relative humidity and storage time on the bioactive compounds and functional properties of grapefruit powder. Journal of Food Engineering, 112, 191–199.Moraga, G., Talens, P., Moraga, M. J., & MartĂnez-Navarrete, N. (2011). Implication of water activity and glass transition on the mechanical and optical properties of freeze-dried apple and banana slices. Journal of Food Engineering, 106, 212–219.Mosquera, L. H., Moraga, G., Fernández de CĂłrdoba, P., & MartĂnez-Navarrete, N. (2011). Water content–water activity–glass transition temperature relationships of spray-dried BorojĂł as related to changes in color and mechanical properties. Food Biophysics, 6, 397–406.Munzuroglu, O., Karatas, F., & Geckil, H. (2003). The vitamin and selenium contents of apricot fruit of different varieties cultivated in different geographical regions. Food Chemistry, 83, 205–212.Murillo, E., MelĂ©ndez-MartĂnez, A. J., & Portugal, F. (2010). Screening of vegetables and fruits from Panama for rich sources of lutein and zeaxanthin. Food Chemistry, 122, 167–172.Nicoli, M. C., Anese, M., Parpinel, M. T., Franceschi, S., & Lerici, C. R. (1997). Loss and/or formation of antioxidants during food processing and storage. Cancer Letters, 114, 71–74.Olives Barba, A. I., Cámara Hurtado, M., Sanchez Mata, M. C., Fernández Ruiz, V., Sáenz, L., & de Tejada, M. (2006). Application of a UV-vis detection-HPLC method for a rapid determination of lycopene and β-carotene in vegetables. Food Chemistry, 95, 328–336.Paredes, D. F. (2010). EvaluaciĂłn nutricional de Cocona (Solanun sessiliflorum Dunal.) deshidratada por mĂ©todo de bandejas a tres temperaturas. Tesis de grado para la obtenciĂłn del tĂtulo BioquĂmico FarmaceĂştico. Escuela Superior PolitĂ©cnica de Chimborazo. Facultad de Ciencias. Ecuador: Escuela de BioquĂmica y Farmacia.Pereira da Silva, D. F., Carlos Rocha, R. H., & Chamhum SalomĂŁo, L. C. (2011). Postharvest quality of cocona (Solanum sessiliflorum Dunal) stored under ambient condition. Rev Ceres Viçosa, 58, 476–480.Quijano, C., & Pino, J. (2006). Changes in volatile constituents during the ripening of cocona (Solanum sessiliflorum Dunal) fruit. CENIC, 37(3), 133–136.Roos, Y. H. (1995). Phase transitions in food. San Diego, CA: Academic.Ross, Y. H., Roininen, K., Jouppila, K., & Tuorila, H. (1998). Glass transition and water plasticization effects on crispness of a snack food extrudate. International Journal of Food Properties, 1(2), 163–180.Rozek, A., GarcĂa-PĂ©rez, J. V., LĂłpez, F., GĂĽell, C., & Ferrando, M. (2010). Infusion of grape phenolics into fruits and vegetables by osmotic treatment: phenolic stability during air drying. Journal of Food Engineering, 99(2), 142–150.Sánchez-Moreno, C., Plaza, L., De Ancos, B., & Cano, M. P. (2003). Quantitative bioactive compounds assessment and their relative contribution to the antioxidant capacity of commercial orange juices. Journal of the Science of Food and Agriculture, 83, 430–439.Silva Filho, D. F. (1998). Cocona (Solanum sessilioflurum Dunal), cultivo y utilizaciĂłn. Caracas, Venezuela: Tratado de CooperaciĂłn AmazĂłnica.Silva Filho, D. F., Yuyama, L. K. O., Aguiar, J. P. L., Oliveira, M. C., & Martins, L. H. P. (2005). Caracterização e avaliação do potencial agronĂ´mico e nutricional de etnovariedades de cubiu (Solanum sessiliflorum Dunal) da amazĂ´nia. Acta AmazĂłnica, 35(4), 399–406.Slade, L., & Levine, H. (1991). Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety. Critical Reviews in Food Science and Nutrition, 30(2–3), 115–360.Spiess, W. E. L., & Wolf, W. R. (1983). The results of the COST 90 Project on water activity. In R. Jowitt, F. Escher, B. Hallstrom, H. F. T. Meffert, W. E. L. Spiess, & G. Vos (Eds.), Physical properties of foods (pp. 65–91). London/New York: Applied Science Publishers.Stahl, W., & Sies, H. (2005). Bioactivity and protective effects of natural carotenoids. Biochimica et Biophysica Acta, 1740, 101–107.Tomás-Barberán, F. A., Gil, M. I., Cremin, P., Waterhouse, A. L., Hess-Pierce, B., & Kader, A. A. (2001). HPLC–DAD–ESIMS analysis of phenolic compounds in nectarines, peaches, and plums. Journal of Agricultural and Food Chemistry, 49, 4748–4760.Torreggiani, D., & Bertolo, G. (2001). Osmotic pre-treatments in fruit processing: chemical, physical and structural effects. Journal of Food Engineering, 49, 247–253.Torres, V. (2010). DeterminaciĂłn del potencial nutritivo y funcional de Guayaba (Psidum guajava L.), cocona (Solanum sessiliflorum Dunal) y camu (Myrciaria dubia Vaugh). Proyecto para la obtenciĂłn del tĂtulo de Ingeniera Agroindustrial. Quito: Facultad de IngenierĂa QuĂmica y Agroindusria.Vashisth, T., Singh, R. K., & Pegg, R. B. (2011). Effects of drying on the phenolics content and antioxidant activity of muscadine pomace. LWT – Food Science and Technology, 44, 1649–1657.Uddin, M. B., Ainsworth, P., & Ä°banoÄźlu, Ĺž. (2004). Evaluation of mass exchange during osmotic dehydration of carrots using response surface methodology. Journal of Food Engineering, 65, 473–477.USDA (2011). National nutrient data base for standard reference, Release 27. Nutrient Data Laboratory Home Page. www.nal.usda.gov . Accessed 2015.Vasco, C., Ruales, J., & Kamal-Eldin, A. (2008). Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chemistry, 111, 816–823.Xu, G., Liu, D., Chen, J., Ye, X., Ma, Y., & Shi, J. (2008). Juice components and antioxidant capacity of citrus varieties cultivated in China. Food Chemistry, 106, 545–551.Yanniotis, S., & Blahovec, J. (2009). Model analysis of sorption isotherms. LWT – Food Science and Technology, 42(10), 1688–1695.Yilmaz, Y., & Toledo, R. (2005). Antioxidant activity of water-soluble. Maillard reaction products. Food Chemistry, 93, 273–278.Yuyama, L. K. O., Macedo, S. H. M., Aguiar, J. P. L., Filho, D. S., Yuyama, K., Fávaro, D. I. T., & Vasconcellos, M. B. A. (2007). Quantificação de macro e micro nutrientes em algumas etnovariedades de cubiu (Solanum sessiliflorum Dunal). Acta AmazĂłnica, 37(3), 425–430.Zou, K., Teng, J., Huang, L., Dai, X., & Baoyao, W. (2013). Effect of osmotic pretreatment on quality of mango chips by explosion puffing drying. LWT – Food Science and Technology, 5, 253–259