28 research outputs found
Blood Substitutes in Cardiac Surgery
A safe, inexpensive, noninfectious substitute for red blood cells has long been sought. Despite tremendous advances in blood banking, the logistics of collecting, transporting, and storing human red blood cells contin ues to create infection and shortage problems. The two basic types of blood substitutes currently under devel opment are hemoglobin based and fluorocarbon based. Although they each transport oxygen differently, the basic advantages and limitations are the same. Blood substitute advantages include the unique capacity for room temperature storage, noninfectivity, adequate supply, and low toxicity. Restrictions include limited dosing in the acute period, limited intravascular half-life and, for the fluorocarbons, a requirement for a high PaO2. In addition, there remain questions about the relationship of nitric oxide metabolism to hypertension in hemoglobin solutions. Early clinical and laboratory trials have shown that both types of solutions are effective oxygen-delivery agents, with acceptable side- effect profiles. Clinical trials are currently underway to determine the safety and efficacy of these solutions in patients undergoing cardiopulmonary bypass.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68576/2/10.1177_108925329800200403.pd
Surfactants: their role in preventing the precipitation of proteins by tannins in insect guts
Much more tannic acid or pin oak tannin is required to precipitate the abundant leaf protein, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPC), from Manduca sexta gut fluid adjusted to pH 6.5 than is required to precipitate this protein from an aqueous buffer at the same pH. This finding demonstrates that some characteristic of M. sexta gut fluid, in addition to its basicity, counteracts the potential of tannins to precipitate ingested proteins. Gut fluid of M. sexta has a surface tension of 36–39 dynes/cm, indicating the presence of surfactants. Lysolecithin and linoleoylglycine, surfactants known to be present in insect gut fluids, also interfere with the precipitation of RuBPC by tannins at pH 6.5. It is concluded that detergency is a widespread property of insect gut fluids that counteracts the potential of tannins to precipitate die ary proteins, and it is argued that there is no longer any justification for continuing to refer to tannins as digestibility-reducing-substances. Finding that there has been no formidable barrier to the evolution of mechanisms that counter a generalized antidigestive action by tannins is difficult to reconcile with the idea that reduced digestibility is an evolved anti-herbivore adaptation of apparent plants.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47751/1/442_2004_Article_BF00379632.pd
A cutting force model based on kinematics analysis for C/SiC in rotary ultrasonic face machining
Ceramic matrix composites (CMC) superior properties and are used in the harsh conditions of high temperature and pressure, in aerospace and other industries. However, due to inhomogeneous and anisotropic properties of the composites, the machining is still challenging to achieve desired efficiency and quality. For advanced materials, Rotary ultrasonic machining is considered as a process with high efficiency technology. The cutting force is a critical factor required to be effectively predicted and controlled to reduce processing defects in composites. In this research, the rotary ultrasonic machining was used for face machining of carbon reinforced silicon carbide matrix composites (C/SiC), with a conical shaped tool. The kinematics between individual diamond abrasive and the workpiece material was analyzed to illustrate the separation characteristics in the cutting area. The condition for the intermittent machining during RUFM was obtained by establishing the mathematical relation between cutting parameters and vibration parameters. The indentation fracture theory was adopted to calculate the penetration depth into the workpiece by diamond abrasives in the RUFM. The relationship of cutting force and processing parameters including spindle speed, feed rate, and cutting depth were investigated. The comparison of the experimental and simulation data of the cutting force, showed that most of the tests, the errors were below 15 %. It is therefore stipulated that the cutting force model developed in this paper can be applied to predict cutting forces and optimize the process in the RUFM of C/SiC