1,256 research outputs found

    Expecting the Unexpected : Measuring Uncertainties in Mobile Robot Path Planning in Dynamic Envionments

    Get PDF
    Unexpected obstacles pose significant challenges to mobile robot navigation. In this paper we investigate how, based on the assumption that unexpected obstacles really follow patterns that can be exploited, a mobile robot can learn the locations within an environment that are likely to contain obstacles, and so plan optimal paths by avoiding these locations in subsequent navigation tasks. We propose the DUNC (Dynamically Updating Navigational Confidence) method to do this. We evaluate the performance of the DUNC method by comparing it with existing methods in a large number of randomly generated simulated test environments. our evaluations show that, by learning the likely locations of unexpected obstacles, the DUNC method can plan more efficient paths than existing approaches to this problem

    TVL<sub>1</sub> Planarity Regularization for 3D Shape Approximation

    Get PDF
    The modern emergence of automation in many industries has given impetus to extensive research into mobile robotics. Novel perception technologies now enable cars to drive autonomously, tractors to till a field automatically and underwater robots to construct pipelines. An essential requirement to facilitate both perception and autonomous navigation is the analysis of the 3D environment using sensors like laser scanners or stereo cameras. 3D sensors generate a very large number of 3D data points when sampling object shapes within an environment, but crucially do not provide any intrinsic information about the environment which the robots operate within. This work focuses on the fundamental task of 3D shape reconstruction and modelling from 3D point clouds. The novelty lies in the representation of surfaces by algebraic functions having limited support, which enables the extraction of smooth consistent implicit shapes from noisy samples with a heterogeneous density. The minimization of total variation of second differential degree makes it possible to enforce planar surfaces which often occur in man-made environments. Applying the new technique means that less accurate, low-cost 3D sensors can be employed without sacrificing the 3D shape reconstruction accuracy

    A Machine Learning Trainable Model to Assess the Accuracy of Probabilistic Record Linkage

    Get PDF
    Record linkage (RL) is the process of identifying and linking data that relates to the same physical entity across multiple heterogeneous data sources. Deterministic linkage methods rely on the presence of common uniquely identifying attributes across all sources while probabilistic approaches use non-unique attributes and calculates similarity indexes for pair wise comparisons. A key component of record linkage is accuracy assessment — the process of manually verifying and validating matched pairs to further refine linkage parameters and increase its overall effectiveness. This process however is time-consuming and impractical when applied to large administrative data sources where millions of records must be linked. Additionally, it is potentially biased as the gold standard used is often the reviewer’s intuition. In this paper, we present an approach for assessing and refining the accuracy of probabilistic linkage based on different supervised machine learning methods (decision trees, naïve Bayes, logistic regression, random forest, linear support vector machines and gradient boosted trees). We used data sets extracted from huge Brazilian socioeconomic and public health care data sources. These models were evaluated using receiver operating characteristic plots, sensitivity, specificity and positive predictive values collected from a 10-fold cross-validation method. Results show that logistic regression outperforms other classifiers and enables the creation of a generalized, very accurate model to validate linkage results

    Within-Neighborhood Patterns and Sources of Particle Pollution: Mobile Monitoring and Geographic Information System Analysis in Four Communities in Accra, Ghana

    Get PDF
    BACKGROUND: Sources of air pollution in developing country cities include transportation and industrial pollution, biomass and coal fuel use, and resuspended dust from unpaved roads. OBJECTIVES: Our goal was to understand within-neighborhood spatial variability of particulate matter (PM) in communities of varying socioeconomic status (SES) in Accra, Ghana, and to quantify the effects of nearby sources on local PM concentration. METHODS: We conducted 1 week of morning and afternoon mobile and stationary air pollution measurements in four study neighborhoods. PM with aerodynamic diameters RESULTS: In our measurement campaign, the geometric means of PM2.5 and PM10 along the mobile monitoring path were 21 and 49 microg/m3, respectively, in the neighborhood with highest SES and 39 and 96 microg/m3, respectively, in the neighborhood with lowest SES and highest population density. PM2.5 and PM10 were as high as 200 and 400 microg/m3, respectively, in some segments of the path. After adjusting for other factors, the factors that had the largest effects on local PM pollution were nearby wood and charcoal stoves, congested and heavy traffic, loose dirt road surface, and trash burning. CONCLUSIONS: Biomass fuels, transportation, and unpaved roads may be important determinants of local PM variation in Accra neighborhoods. If confirmed by additional or supporting data, the results demonstrate the need for effective and equitable interventions and policies that reduce the impacts of traffic and biomass pollution

    Performance of random forest when SNPs are in linkage disequilibrium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Single nucleotide polymorphisms (SNPs) may be correlated due to linkage disequilibrium (LD). Association studies look for both direct and indirect associations with disease loci. In a Random Forest (RF) analysis, correlation between a true risk SNP and SNPs in LD may lead to diminished variable importance for the true risk SNP. One approach to address this problem is to select SNPs in linkage equilibrium (LE) for analysis. Here, we explore alternative methods for dealing with SNPs in LD: change the tree-building algorithm by building each tree in an RF only with SNPs in LE, modify the importance measure (IM), and use haplotypes instead of SNPs to build a RF.</p> <p>Results</p> <p>We evaluated the performance of our alternative methods by simulation of a spectrum of complex genetics models. When a haplotype rather than an individual SNP is the risk factor, we find that the original Random Forest method performed on SNPs provides good performance. When individual, genotyped SNPs are the risk factors, we find that the stronger the genetic effect, the stronger the effect LD has on the performance of the original RF. A revised importance measure used with the original RF is relatively robust to LD among SNPs; this revised importance measure used with the revised RF is sometimes inflated. Overall, we find that the revised importance measure used with the original RF is the best choice when the genetic model and the number of SNPs in LD with risk SNPs are unknown. For the haplotype-based method, under a multiplicative heterogeneity model, we observed a decrease in the performance of RF with increasing LD among the SNPs in the haplotype.</p> <p>Conclusion</p> <p>Our results suggest that by strategically revising the Random Forest method tree-building or importance measure calculation, power can increase when LD exists between SNPs. We conclude that the revised Random Forest method performed on SNPs offers an advantage of not requiring genotype phase, making it a viable tool for use in the context of thousands of SNPs, such as candidate gene studies and follow-up of top candidates from genome wide association studies.</p
    • …
    corecore