16 research outputs found

    Negative visuospatial priming in isolation-reared rats: Evidence of resistance to the disruptive effects of amphetamine

    No full text
    Negative visuospatial priming (NP) represents a quantifiable measure of inhibitory information processing that is disrupted in several neurodevelopmental and psychiatric disorders, including schizophrenia. We developed a novel rodent NP task to investigate mechanisms underlying NP and its role in various disorders, and to test potential therapeutics. In the present studies, we further characterized this novel paradigm by investigating whether NP is disrupted in rats reared in isolation, a developmental manipulation that produces a range of abnormalities in behavior, neurochemistry, and brain structure that mirror aspects of schizophrenia pathology. We also further explored the role of monoaminergic signaling in NP and the effects of isolation rearing by challenging both socially reared and isolation-reared rats with D-amphetamine during the NP task. Although fewer isolation-reared animals learned the complex NP task, those that learned exhibited unaffected NP compared with socially reared rats. Consistent with previous reports, D-amphetamine impaired NP and increased motor impulsivity in socially reared rats. In contrast, D-amphetamine did not affect NP or motor impulsivity in isolation-reared rats. These data confirm a monoaminergic influence on NP behavior and indicate that rats reared in isolation have altered dopaminergic sensitivity
    corecore