426 research outputs found

    An upper limit to the masses of stars

    Full text link
    There is no accepted upper mass limit for stars. Such a basic quantity escapes both theory, because of incomplete understanding of star formation, and observation, because of incompleteness in surveying the Galaxy. The Arches cluster is ideal for such a test, being massive enough to expect stars at least as massive as 400 solar masses, and young enough for its most massive members to still be visible. It is old enough to be free of its natal molecular cloud, and close enough, and at a well-established distance, for us to discern its individual stars. Here I report an absence of stars with initial masses greater than 130 M_Sun in the Arches cluster, where the typical mass function predicts 18. I conclude that this indicates a firm limit of 150 M_Sun for stars as the probability that the observations are consistent with no limit is 10^-8.Comment: To appear in Nature, March 10, 2005, Vol. 34, No. 7030, 192 (ST ScI Eprint #1645). More files can be found at http://www.stsci.edu/~fige

    Extracting science from surveys of our Galaxy

    Full text link
    Our knowledge of the Galaxy is being revolutionised by a series of photometric, spectroscopic and astrometric surveys. Already an enormous body of data is available from completed surveys, and data of ever increasing quality and richness will accrue at least until the end of this decade. To extract science from these surveys we need a class of models that can give probability density functions in the space of the observables of a survey -- we should not attempt to "invert" the data from the space of observables into the physical space of the Galaxy. Currently just one class of model has the required capability, so-called "torus models". A pilot application of torus models to understanding the structure of the Galaxy's thin and thick discs has already produced two significant results: a major revision of our best estimate of the Sun's velocity with respect to the Local Standard of Rest, and a successful prediction of the way in which the vertical velocity dispersion in the disc varies with distance from the Galactic plane.Comment: 13 pages. Invited review to appear in Pramana - journal of physics (Indian Academy of Sciences

    Homozygosity for a missense mutation in the 67 kDa isoform of glutamate decarboxylase in a family with autosomal recessive spastic cerebral palsy: parallels with Stiff-Person Syndrome and other movement disorders

    Get PDF
    Background Cerebral palsy (CP) is an heterogeneous group of neurological disorders of movement and/or posture, with an estimated incidence of 1 in 1000 live births. Non-progressive forms of symmetrical, spastic CP have been identified, which show a Mendelian autosomal recessive pattern of inheritance. We recently described the mapping of a recessive spastic CP locus to a 5 cM chromosomal region located at 2q24-31.1, in rare consanguineous families. Methods Here we present data that refine this locus to a 0.5 cM region, flanked by the microsatellite markers D2S2345 and D2S326. The minimal region contains the candidate gene GAD1, which encodes a glutamate decarboxylase isoform (GAD67), involved in conversion of the amino acid and excitatory neurotransmitter glutamate to the inhibitory neurotransmitter γ-aminobutyric acid (GABA). Results A novel amino acid mis-sense mutation in GAD67 was detected, which segregated with CP in affected individuals. Conclusions This result is interesting because auto-antibodies to GAD67 and the more widely studied GAD65 homologue encoded by the GAD2 gene, are described in patients with Stiff-Person Syndrome (SPS), epilepsy, cerebellar ataxia and Batten disease. Further investigation seems merited of the possibility that variation in the GAD1 sequence, potentially affecting glutamate/GABA ratios, may underlie this form of spastic CP, given the presence of anti-GAD antibodies in SPS and the recognised excitotoxicity of glutamate in various contexts

    Stochastic Species Turnover and Stable Coexistence in a Species-Rich, Fire-Prone Plant Community

    Get PDF
    Understanding the mechanisms that maintain diversity is important for managing ecosystems for species persistence. Here we used a long-term data set to understand mechanisms of coexistence at the local and regional scales in the Cape Floristic Region, a global hotspot of plant diversity. We used a dataset comprising 81 monitoring sites, sampled in 1966 and again in 1996, and containing 422 species for which growth form, regeneration mode, dispersal distance and abundances at both the local (site) and meta-community scales are known. We found that species presence and abundance were stable at the meta-community scale over the 30 year period but highly unstable at the local scale, and were not influenced by species' biological attributes. Moreover, rare species were no more likely to go extinct at the local scale than common species, and that alpha diversity in local communities was strongly influenced by habitat. We conclude that stochastic environmental fluctuations associated with recurrent fire buffer populations from extinction, thereby ensuring stable coexistence at the meta-community scale by creating a “neutral-like” pattern maintained by niche-differentiation

    Is it harder to know or to reason? Analyzing two-tier science assessment items using the Rasch measurement model

    Get PDF
    Two-tier multiple-choice (TTMC) items are used to assess students’ knowledge of a scientific concept for tier 1 and their reasoning about this concept for tier 2. But are the knowledge and reasoning involved in these tiers really distinguishable? Are the tiers equally challenging for students? The answers to these questions influence how we use and interpret TTMC instruments. We apply the Rasch measurement model on TTMC items to see if the items are distinguishable according to different traits (represented by the tier), or according to different content sub-topics within the instrument, or to both content and tier. Two TTMC data sets are analyzed: data from Singapore and Korea on the Light Propagation Diagnostic Instrument (LPDI), data from the United States on the Classroom Test of Scientific Reasoning (CTSR). Findings for LPDI show that tier-2 reasoning items are more difficult than tier-1 knowledge items, across content sub-topics. Findings for CTSR do not show a consistent pattern by tier or by content sub-topic. We conclude that TTMC items cannot be assumed to have a consistent pattern of difficulty by tier—and that assessment developers and users need to consider how the tiers operate when administering TTMC items and interpreting results. Researchers must check the tiers’ difficulties empirically during validation and use. Though findings from data in Asian contexts were more consistent, further study is needed to rule out differences between the LPDI and CTSR instruments

    Previously described sequence variant in CDK5RAP2 gene in a Pakistani family with autosomal recessive primary microcephaly

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autosomal Recessive Primary Microcephaly (MCPH) is a disorder of neurogenic mitosis. MCPH leads to reduced cerebral cortical volume and hence, reduced head circumference associated with mental retardation of variable degree. Genetic heterogeneity is well documented in patients with MCPH with six loci known, while pathogenic sequence variants in four respective genes have been identified so far. Mutations in <it>CDK5RAP2 </it>gene at MCPH3 locus have been least involved in causing MCPH phenotype.</p> <p>Methods</p> <p>All coding exons and exon/intron splice junctions of <it>CDK5RAP2 </it>gene were sequenced in affected and normal individuals of Pakistani MCPH family of Kashmiri origin, which showed linkage to MCPH3 locus on chromosome 9q33.2.</p> <p>Results</p> <p>A previously described nonsense mutation [243 T>A (S81X)] in exon 4 of <it>CDK5RAP2 </it>gene has been identified in the Pakistani family, presented here, with MCPH Phenotype. Genomic and cDNA sequence comparison revealed that the exact nomenclature for this mutation is 246 T>A (Y82X).</p> <p>Conclusion</p> <p>Recurrent observation of Y82X mutation in <it>CDK5RAP2 </it>gene in this Pakistani family may be a sign of confinement of a rare ancestral haplotype carrying this pathogenic variant within Northern Pakistani population, as this has not been reported in any other population.</p

    Expression of GAD67 and Novel GAD67 Splice Variants During Human Fetal Pancreas Development: GAD67 Expression in the Fetal Pancreas

    Get PDF
    Glutamic acid decarboxylase (GAD) is a major inhibitory neurotransmitter in the brain, which catalyses the reaction of l-glutamate to γ-aminobutyric acid. There are two isoforms of GAD, a 65-kDa form and a 67-kDa form, which are encoded by two different genes. As previous studies suggested a role for GAD67 splice variants during fetal pancreas development, we have investigated the mRNA expression of GAD67 and GAD67 splice variants in a series of 14 human fetal pancreases between 14 weeks gestation and term and in adult control pancreases by RT-PCR. In this study, we demonstrate mRNA expression of GAD67 and four GAD67 splice variants, including GAD25, in human fetal and adult specimens. Some of the splice variants, including various proportions of exon 7 or a new exon between exons 6 and 7, have not been described before in the human pancreas. We speculate that the expression of these GAD67 splice variants might be related to human fetal pancreas development

    Adult and Embryonic GAD Transcripts Are Spatiotemporally Regulated during Postnatal Development in the Rat Brain

    Get PDF
    GABA (gamma-aminobutyric acid), the main inhibitory neurotransmitter in the brain, is synthesized by glutamic acid decarboxylase (GAD). GAD exists in two adult isoforms, GAD65 and GAD67. During embryonic brain development at least two additional transcripts exist, I-80 and I-86, which are distinguished by insertions of 80 or 86 bp into GAD67 mRNA, respectively. Though it was described that embryonic GAD67 transcripts are not detectable during adulthood there are evidences suggesting re-expression under certain pathological conditions in the adult brain. In the present study we systematically analyzed for the first time the spatiotemporal distribution of different GADs with emphasis on embryonic GAD67 mRNAs in the postnatal brain using highly sensitive methods. hybridizations confirmed the occurrence of embryonic GAD67 transcripts in the olfactory bulb and furthermore detected their localization mainly in the subventricular zone and the rostral migratory stream.Embryonic GAD67 transcripts can hardly be detected in the adult brain, except for specific regions associated with neurogenesis and high synaptic plasticity. Therefore a functional role in processes like proliferation, migration or synaptogenesis is suggested

    A Rasch and factor analysis of the Functional Assessment of Cancer Therapy-General (FACT-G)

    Get PDF
    BACKGROUND: Although the Functional Assessment of Cancer Therapy – General questionnaire (FACT-G) has been validated few studies have explored the factor structure of the instrument, in particular using non-sample dependent measurement techniques, such as Rasch Models. Furthermore, few studies have explored the relationship between item fit to the Rasch Model and clinical utility. The aim of this study was to investigate the dimensionality and measurement properties of the FACT-G with Rasch Models and Factor analysis. METHODS: A factor analysis and Rasch analysis (Partial Credit Model) was carried out on the FACT-G completed by a heterogeneous sample of cancer patients (n = 465). For the Rasch analysis item fit (infit mean squares ≥ 1.30), dimensionality and item invariance were assessed. The impact of removing misfitting items on the clinical utility of the subscales and FACT-G total scale was also assessed. RESULTS: The factor analysis demonstrated a four factor structure of the FACT-G which broadly corresponded to the four subscales of the instrument. Internal consistency for these four scales was very good (Cronbach's alpha 0.72 – 0.85). The Rasch analysis demonstrated that each of the subscales and the FACT-G total scale had misfitting items (infit means square ≥ 1.30). All these scales with the exception of the Social & Family Well-being Scale (SFWB) were unidimensional. When misfitting items were removed, the effect sizes and the clinical utility of the instrument were maintained for the subscales and the total FACT-G scores. CONCLUSION: The results of the traditional factor analysis and Rasch analysis of the FACT-G broadly agreed. Caution should be exercised when utilising the Social & Family Well-being scale and further work is required to determine whether this scale is best represented by two factors. Additionally, removing misfitting items from scales should be performed alongside an assessment of the impact on clinical utility
    corecore