104 research outputs found

    Foot and ankle injuries during the Athens 2004 Olympic Games

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Major, rare and complex incidents can occur at any mass-gathering sporting event and team medical staff should be appropriately prepared for these. One such event, the Athens Olympic Games in 2004, presented a significant sporting and medical challenge. This study concerns an epidemiological analysis of foot and ankle injuries during the Games.</p> <p>Methods</p> <p>An observational, epidemiological survey was used to analyse injuries in all sport tournaments (men's and women's) over the period of the Games.</p> <p>Results</p> <p>A total of 624 injuries (525 soft tissue injuries and 99 bony injuries) were reported. The most frequent diagnoses were contusions, sprains, fractures, dislocations and lacerations. Significantly more injuries in male (58%) versus female athletes (42%) were recorded. The incidence, diagnosis and cause of injuries differed substantially between the team sports.</p> <p>Conclusion</p> <p>Our experience from the Athens Olympic Games will inform the development of public health surveillance systems for future Olympic Games, as well as other similar mass events.</p

    Infectious Disease Modeling of Social Contagion in Networks

    Get PDF
    Many behavioral phenomena have been found to spread interpersonally through social networks, in a manner similar to infectious diseases. An important difference between social contagion and traditional infectious diseases, however, is that behavioral phenomena can be acquired by non-social mechanisms as well as through social transmission. We introduce a novel theoretical framework for studying these phenomena (the SISa model) by adapting a classic disease model to include the possibility for ‘automatic’ (or ‘spontaneous’) non-social infection. We provide an example of the use of this framework by examining the spread of obesity in the Framingham Heart Study Network. The interaction assumptions of the model are validated using longitudinal network transmission data. We find that the current rate of becoming obese is 2 per year and increases by 0.5 percentage points for each obese social contact. The rate of recovering from obesity is 4 per year, and does not depend on the number of non-obese contacts. The model predicts a long-term obesity prevalence of approximately 42, and can be used to evaluate the effect of different interventions on steady-state obesity. Model predictions quantitatively reproduce the actual historical time course for the prevalence of obesity. We find that since the 1970s, the rate of recovery from obesity has remained relatively constant, while the rates of both spontaneous infection and transmission have steadily increased over time. This suggests that the obesity epidemic may be driven by increasing rates of becoming obese, both spontaneously and transmissively, rather than by decreasing rates of losing weight. A key feature of the SISa model is its ability to characterize the relative importance of social transmission by quantitatively comparing rates of spontaneous versus contagious infection. It provides a theoretical framework for studying the interpersonal spread of any state that may also arise spontaneously, such as emotions, behaviors, health states, ideas or diseases with reservoirs.National Institutes of Health (U.S.) (grant R01GM078986)National Science Foundation (U.S.)Bill & Melinda Gates FoundationTempleton FoundationNational Institute on Aging (grant P01 AG031093)Framingham Heart Study (contract number N01-HC-25195

    First-Principles Study of the Electronic and Magnetic Properties of Defects in Carbon Nanostructures

    Full text link
    Understanding the magnetic properties of graphenic nanostructures is instrumental in future spintronics applications. These magnetic properties are known to depend crucially on the presence of defects. Here we review our recent theoretical studies using density functional calculations on two types of defects in carbon nanostructures: Substitutional doping with transition metals, and sp3^3-type defects created by covalent functionalization with organic and inorganic molecules. We focus on such defects because they can be used to create and control magnetism in graphene-based materials. Our main results are summarized as follows: i)Substitutional metal impurities are fully understood using a model based on the hybridization between the dd states of the metal atom and the defect levels associated with an unreconstructed D3h_{3h} carbon vacancy. We identify three different regimes, associated with the occupation of distinct hybridization levels, which determine the magnetic properties obtained with this type of doping; ii) A spin moment of 1.0 μB\mu_B is always induced by chemical functionalization when a molecule chemisorbs on a graphene layer via a single C-C (or other weakly polar) covalent bond. The magnetic coupling between adsorbates shows a key dependence on the sublattice adsorption site. This effect is similar to that of H adsorption, however, with universal character; iii) The spin moment of substitutional metal impurities can be controlled using strain. In particular, we show that although Ni substitutionals are non-magnetic in flat and unstrained graphene, the magnetism of these defects can be activated by applying either uniaxial strain or curvature to the graphene layer. All these results provide key information about formation and control of defect-induced magnetism in graphene and related materials.Comment: 40 pages, 17 Figures, 62 References; Chapter 2 in Topological Modelling of Nanostructures and Extended Systems (2013) - Springer, edited by A. R. Ashrafi, F. Cataldo, A. Iranmanesh, and O. Or

    Fleas as parasites of the family Canidae

    Get PDF
    Historically, flea-borne diseases are among the most important medical diseases of humans. Plague and murine typhus are known for centuries while the last years brought some new flea-transmitted pathogens, like R. felis and Bartonella henselae. Dogs may play an essential or an accidental role in the natural transmission cycle of flea-borne pathogens. They support the growth of some of the pathogens or they serve as transport vehicles for infected fleas between their natural reservoirs and humans. More than 15 different flea species have been described in domestic dogs thus far. Several other species have been found to be associated with wild canids. Fleas found on dogs originate from rodents, birds, insectivores and from other Carnivora. Dogs therefore may serve as ideal bridging hosts for the introduction of flea-borne diseases from nature to home. In addition to their role as ectoparasites they cause nuisance for humans and animals and may be the cause for severe allergic reactions

    Role of host genetics in fibrosis

    Get PDF
    Fibrosis can occur in tissues in response to a variety of stimuli. Following tissue injury, cells undergo transformation or activation from a quiescent to an activated state resulting in tissue remodelling. The fibrogenic process creates a tissue environment that allows inflammatory and matrix-producing cells to invade and proliferate. While this process is important for normal wound healing, chronicity can lead to impaired tissue structure and function

    Role of Synucleins in Alzheimer’s Disease

    Get PDF
    Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most common causes of dementia and movement disorders in the elderly. While progressive accumulation of oligomeric amyloid-β protein (Aβ) has been identified as one of the central toxic events in AD leading to synaptic dysfunction, accumulation of α-synuclein (α-syn) resulting in the formation of oligomers has been linked to PD. Most of the studies in AD have been focused on investigating the role of Aβ and Tau; however, recent studies suggest that α-syn might also play a role in the pathogenesis of AD. For example, fragments of α-syn can associate with amyloid plaques and Aβ promotes the aggregation of α-syn in vivo and worsens the deficits in α-syn tg mice. Moreover, α-syn has also been shown to accumulate in limbic regions in AD, Down’s syndrome, and familial AD cases. Aβ and α-syn might directly interact under pathological conditions leading to the formation of toxic oligomers and nanopores that increase intracellular calcium. The interactions between Aβ and α-syn might also result in oxidative stress, lysosomal leakage, and mitochondrial dysfunction. Thus, better understanding the steps involved in the process of Aβ and α-syn aggregation is important in order to develop intervention strategies that might prevent or reverse the accumulation of toxic proteins in AD

    Genome Wide Analysis of Drug-Induced Torsades de Pointes: Lack of Common Variants with Large Effect Sizes

    Get PDF
    Marked prolongation of the QT interval on the electrocardiogram associated with the polymorphic ventricular tachycardia Torsades de Pointes is a serious adverse event during treatment with antiarrhythmic drugs and other culprit medications, and is a common cause for drug relabeling and withdrawal. Although clinical risk factors have been identified, the syndrome remains unpredictable in an individual patient. Here we used genome-wide association analysis to search for common predisposing genetic variants. Cases of drug-induced Torsades de Pointes (diTdP), treatment tolerant controls, and general population controls were ascertained across multiple sites using common definitions, and genotyped on the Illumina 610k or 1M-Duo BeadChips. Principal Components Analysis was used to select 216 Northwestern European diTdP cases and 771 ancestry-matched controls, including treatment-tolerant and general population subjects. With these sample sizes, there is 80% power to detect a variant at genome-wide significance with minor allele frequency of 10% and conferring an odds ratio of ≥2.7. Tests of association were carried out for each single nucleotide polymorphism (SNP) by logistic regression adjusting for gender and population structure. No SNP reached genome wide-significance; the variant with the lowest P value was rs2276314, a non-synonymous coding variant in C18orf21 (p  =  3×10(-7), odds ratio = 2, 95% confidence intervals: 1.5-2.6). The haplotype formed by rs2276314 and a second SNP, rs767531, was significantly more frequent in controls than cases (p  =  3×10(-9)). Expanding the number of controls and a gene-based analysis did not yield significant associations. This study argues that common genomic variants do not contribute importantly to risk for drug-induced Torsades de Pointes across multiple drugs
    corecore