16 research outputs found

    Using δ13C and hydroscapes for discriminating cultivar specific drought responses

    Get PDF
    This article is published in cooperation with Terclim 2022 (XIVth International Terroir Congress and 2nd ClimWine Symposium), 3-8 July 2022, Bordeaux, France.Measurement of carbon isotope discrimination in berry juice at maturity (δ13C) provides an integrated assessment of vine water status and water use efficiency (WUE) during the period of berry ripening, and when collected over multiple seasons, can provide an indication of drought stress responses. Berry juice δ13C measurements were carried out on 48 different varieties planted in a common garden experiment in Bordeaux, France from 2014 through 2020 and found important differences across this large panel of varieties. Cluster analysis showed that δ13C values are likely affected by the differing phenology of each variety, resulting in berry ripening of different varieties taking place under different conditions of soil water availability within the same year. Accounting for these phenological differences, the cluster analysis created a classification of varieties that corresponds well to our current empirical understanding of their relative drought tolerance. In addition, using measurements of predawn and midday leaf water potential measurements collected over four seasons on a subset of six varieties, a hydroscape approach was used to develop a list of metrics indicative of the sensitivity of stomatal regulation to water stress (i.e., an/isohydric behaviour). Key hydroscape metrics were also found to be well correlated with some δ13C metrics. A variety’s water potential regulation as characterized by a minimum critical leaf water potential as determined from hydroscapes was strongly correlated to δ13C values under well-watered conditions, suggesting that the latter may be a useful indicator of drought stress response.COntinental To coastal Ecosystems: evolution, adaptability and governanc

    Estimating Bulk Stomatal Conductance in Grapevine Canopies

    Get PDF
    In response to changes in their environments, grapevines regulate transpiration using various physiological mechanisms that alter conductance of water through the soil-plant-atmosphere continuum. Expressed as bulk stomatal conductance at the canopy scale, it varies diurnally in response to changes in vapor pressure deficit and net radiation, and over the season to changes in soil water deficits and hydraulic conductivity of both the soil and plant. To help with future characterization of this dynamic response, a simplified method is presented for determining bulk stomatal conductance based on the crop canopy energy flux model by Shuttleworth and Wallace using measurements of individual vine sap flow, temperature and humidity within the vine canopy, and estimates of net radiation absorbed by the vine canopy. The methodology presented respects the energy flux dynamics of vineyards with open canopies, while avoiding problematic measurements of soil heat flux and boundary layer conductance needed by other methods, which might otherwise interfere with ongoing vineyard management practices. Based on this method and measurements taken on several vines in a non-irrigated vineyard in Bordeaux France, bulk stomatal conductance was estimated on 15-minute intervals from July to mid-September 2020 producing values similar to those presented for vineyards in the literature. Time-series plots of this conductance show significant diurnal variation and seasonal decreases in conductance associated with increased vine water stress as measured by predawn leaf water potential. Global sensitivity analysis using non-parametric regression found transpiration flux and vapor pressure deficit to be the most important input variables to the calculation of bulk stomatal conductance, with absorbed net radiation and bulk boundary layer conductance being much less important. Conversely, bulk stomatal conductance was one of the most important inputs when calculating vine transpiration, emphasizing the usefulness of characterizing its dynamic response for the purpose of estimating vine canopy transpiration in water use models.COntinental To coastal Ecosystems: evolution, adaptability and governanc

    An operational model for capturing grape ripening dynamics to support harvest decisions

    Get PDF
    Grape ripening is a critical phenological phase during which many metabolites that impact wine quality accumulate in the berries. Major changes in berry composition include a rapid increase in sugar and a decrease in malic acid content and concentration. Its duration is highly variable depending on grapevine variety, climatic parameters, soil type and management practices. Together with the timing of mid-veraison, this duration determines when grapes can be harvested. Viticulturists and winemakers monitor the sugar-to-total acidity ratio (S/TA) during grape ripening and start harvesting grapes when this ratio reaches the optimum value for the desired wine style. The S/TA ratio evolves linearly as a function of thermal summation during the first four weeks following the onset of ripening. The linearity of the evolution of the S/TA ratio as a function of thermal time during the first four weeks following mid-veraison is applied in this study on two large data sets encompassing (1) 53 varieties studied during 10 years with two to four replicates for each combination of year and cultivar and (2) two varieties, cultivated on three soil types over 13 years. Grape ripening speed is highly variable. The effects of the year impact ripening speed more than the effects of the soil or the variety, although all three effects are highly significant. Grape ripening speed decreases with berry weight and also varies with vine water status. By using this approach, viticulturists and winemakers can assess four weeks after mid-veraison, for each individual vineyard parcel, at what speed grape ripening progresses. Combined with precise mid-veraison scoring, expertise from previous vintages and complementary approaches like sensory assessment of berries, it allows harvest date estimates to be fine-tuned. The results of this study can also be used to identify slow ripening varies, which are better performing in warm climates and, thus, better adapted to climate change

    Variety-specific response of bulk stomatal conductance of grapevine canopies to changes in net radiation, atmospheric demand, and drought stress

    Get PDF
    In wine growing regions around the world, climate change has the potential to affect vine transpiration and overall vineyard water use due to related changes in daily atmospheric conditions and soil water deficits. Grapevines control their transpiration in response to such changes by regulating conductance of water through the soil-plant-atmosphere continuum. The response of bulk stomatal conductance, the vine canopy equivalent of stomatal conductance, to such changes were studied on Cabernet-Sauvignon, Merlot, Tempranillo, Ugni blanc, and Semillon vines in a non-irrigated vineyard in Bordeaux France. Whole-vine sap flow, temperature and humidity in the vine canopy, and net radiation absorbed by the vine canopy were measured on 15-minute intervals from early July through mid-September 2020, together with periodic measurements of leaf area, canopy porosity, and predawn leaf water potential. From these data, bulk stomatal conductance was calculated on 15-minute intervals, and multiple linear regression analysis was performed to identify key variables and their relative effect on conductance. For the regression analysis, attention was focused on addressing non-linearity and collinearity in the explanatory variables and developing a model that was readily interpretable.Variability of vapour pressure deficit in the vine canopy over the day and predawn water potential over the season explained much of the variability in bulk stomatal conductance overall, with relative differences between varieties appearing to be driven in large part by differences in conductance response to predawn water potential between the varieties. Transpiration simulations based on the regression equations found similar differences between varieties in terms of daily and seasonal transpiration. These simulations also compared well with those from an accepted vineyard water balance model, although there appeared to be differences between the two approaches in the rate at which conductance, and hence transpiration is reduced as a function of decreasing soil water content (i.e., increasing water deficit stress). By better characterizing the response of bulk stomatal conductance, the dynamics of vine transpiration can be better parameterized in vineyard water use modeling of current and future climate scenarios.COntinental To coastal Ecosystems: evolution, adaptability and governanc

    Aromatic maturity is a cornerstone of terroir expression in red wine

    Get PDF
    This article is published in cooperation with Terclim 2022 (XIVth International Terroir Congress and 2nd ClimWine Symposium), 3-8 July 2022, Bordeaux, France.Harvesting grapes at adequate maturity is key to the production of high-quality red wines. Viticulturists, enologists, and wine makers define several types of maturity, including physiological maturity, technological maturity, phenolic maturity, and aromatic maturity. Physiological maturity is a biological concept. Technological maturity and phenolic maturity are relatively well documented in the scientific literature, being linked to quantifiable compounds in grape must. Articles on aromatic maturity are scarcer. This is surprising, because aromatic maturity is, probably, the most important of the four in determining wine quality and typicity, including terroir expression, i.e.  the identifiable taste of wine in relation to its origin. Optimal terroir expression can be obtained when technological, phenolic, and aromatic maturity are reached at the same time, or within a short time frame. This is more likely to occur when the ripening takes place under mild temperatures, neither too cool, nor too hot.Aromatic expression in wine can be driven, in order from low to high maturity, by green, herbal, spicy, floral, fresh fruit, ripe fruit, jammy fruit, dried fruit, candied, or cooked fruit aromas. Green and cooked fruit aromas are not desirable in red wines, while the levels of other aromatic nuances contribute to the typicity of the wine in relation to its place of origin. Wines produced in cool climates, or on cool soils in temperate climates, are likely to express herbal or fresh fruit aromas, while wines produced under warm climates, or on warm soils in temperate climates, may express ripe fruit, jammy fruit, or candied fruit aromas.This article reviews the state of the art of compounds underpinning the aromas of wines obtained from grapes harvested at different stages of maturity. Advances in the understanding of how aromatic maturity shapes terroir expression and how it can be manipulated by variety choices and management practices, under current and future climatic conditions, are shown. Early ripening varieties perform better in cool climates and late ripening varieties in warm climates. Additionally, maturity can be advanced or delayed by different canopy management practices or training systems. Timing of harvest also impacts aromatic expression of the produced wine. Gaps in the literature are highlighted to guide future directions of research

    Phenological Model Intercomparison for Estimating Grapevine Budbreak Date (Vitis vinifera L.) in Europe

    Get PDF
    Budbreak date in grapevine is strictly dependent on temperature, and the correct simulation of its occurrence is of great interest since it may have major consequences on the final yield and quality. In this study, we evaluated the reliability for budbreak simulation of two modeling approaches, the chilling-forcing (CF), which describes the entire dormancy period (endo- and eco-dormancy) and the forcing approach (F), which only describes the eco-dormancy. For this, we selected six phenological models that apply CF and F in different ways, which were tested on budbreak simulation of eight grapevine varieties cultivated at different latitudes in Europe. Although none of the compared models showed a clear supremacy over the others, models based on CF showed a generally higher estimation accuracy than F where fixed starting dates were adopted. In the latter models, the accurate simulation of budbreak was dependent on the selection of the starting date for forcing accumulation that changes according to the latitude, whereas CF models were independent. Indeed, distinct thermal requirements were found for the grapevine varieties cultivated in Northern and Southern Europe. This implies the need to improve modeling of the dormancy period to avoid under- or over-estimations of budbreak date under different environmental conditions.This research was funded by the European Union’s Horizon 2020 Research and Innovation Programme, under the Clim4Vitis project: “Climate change impact mitigation for European viticulture: knowledge transfer for an integrated approach”, grant agreement no. 810176. It was also supported by FCT-Portuguese Foundation for Science and Technology, under the project UIDB/04033/2020 and the French National Research Agency (ANR) in the frame of the Investments for the Future Program, within the cluster of excellence COTE (ANR-10-LABX-45)

    Varietal responses to soil water deficit: first results from a common-garden vineyard near Bordeaux France

    No full text
    In wine producing regions around the world, climate change has the potential to decrease the frequency and amount of precipitation and increase average and extreme temperatures. This will both lower soil water availability and increase evaporative demand in vineyards, thereby increasing soil water deficits and associated vine stress. Grapevines control their water status by regulating stomatal closure and other changes to internal plant hydraulics. These responses are complex and have not been clearly characterized across a wide range of different Vitis vinifera varieties. Understanding how vine water status responds to changes in soil water deficits and other variables will help growers modify vineyard design and management practices to meet their quality and yield objectives. Carbon isotope discrimination measurements of certain plant tissues have been shown to provide effective characterization of stomatal closure, while water potential measurements provide a well-proven measure of overall vine water status. Using replicated data collected from an experimental common-garden vineyard at the Institut des Sciences de la Vigne et du Vin (ISVV) near Bordeaux, France, this project will analyze the effects on carbon isotope discrimination across 39 varieties and water potential across eight varieties against estimates of soil water deficits made using a water balance model running on local meteorology and considering the phenology of each variety. Similar to the literature, preliminary analysis finds as soil water deficit increases, carbon isotope data suggests greater stomatal closure and water potential measurements indicate greater vine stress. For both parameters, analysis will be performed to distinguish any difference in these responses between varieties

    Varietal responses to soil water deficit: first results from a common-garden vineyard near Bordeaux France

    Get PDF
    In wine producing regions around the world, climate change has the potential to decrease the frequency and amount of precipitation and increase average and extreme temperatures. This will both lower soil water availability and increase evaporative demand in vineyards, thereby increasing soil water deficits and associated vine stress. Grapevines control their water status by regulating stomatal closure and other changes to internal plant hydraulics. These responses are complex and have not been clearly characterized across a wide range of different Vitis vinifera varieties. Understanding how vine water status responds to changes in soil water deficits and other variables will help growers modify vineyard design and management practices to meet their quality and yield objectives. Carbon isotope discrimination measurements of certain plant tissues have been shown to provide effective characterization of stomatal closure, while water potential measurements provide a well-proven measure of overall vine water status. Using replicated data collected from an experimental common-garden vineyard at the Institut des Sciences de la Vigne et du Vin (ISVV) near Bordeaux, France, this project will analyze the effects on carbon isotope discrimination across 39 varieties and water potential across eight varieties against estimates of soil water deficits made using a water balance model running on local meteorology and considering the phenology of each variety. Similar to the literature, preliminary analysis finds as soil water deficit increases, carbon isotope data suggests greater stomatal closure and water potential measurements indicate greater vine stress. For both parameters, analysis will be performed to distinguish any difference in these responses between varieties
    corecore