780 research outputs found

    The DECam Local Volume Exploration Survey Data Release 2

    Get PDF
    We present the second public data release (DR2) from the DECam Local Volume Exploration survey (DELVE). DELVE DR2 combines new DECam observations with archival DECam data from the Dark Energy Survey, the DECam Legacy Survey, and other DECam community programs. DELVE DR2 consists of ∼160,000 exposures that cover >21,000 deg2 of the high-Galactic-latitude (∣b∣ > 10°) sky in four broadband optical/near-infrared filters (g, r, i, z). DELVE DR2 provides point-source and automatic aperture photometry for ∼2.5 billion astronomical sources with a median 5σ point-source depth of g = 24.3, r = 23.9, i = 23.5, and z = 22.8 mag. A region of ∼17,000 deg2 has been imaged in all four filters, providing four-band photometric measurements for ∼618 million astronomical sources. DELVE DR2 covers more than 4 times the area of the previous DELVE data release and contains roughly 5 times as many astronomical objects. DELVE DR2 is publicly available via the NOIRLab Astro Data Lab science platform

    The 16th data release of the sloan digital sky surveys: first release from the APOGEE-2 southern survey and full release of eBOSS spectra

    Full text link
    Artículo escrito por un elevado número de autores, sólo se referencian el que aparece en primer lugar, los autores pertenecientes a la UAM y el nombre del grupo de colaboración, si lo hubiereThis paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library "MaStar"). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17)Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High-Performance Computing at the University of Uta

    OzDES multifibre spectroscopy for the Dark Energy Survey : 3-yr results and first data release

    Get PDF
    We present results for the first three years of OzDES, a six year programme to obtain redshifts for objects in the Dark Energy Survey (DES) supernova fields using the 2dF fibre positioner and AAOmega spectrograph on the Anglo-Australian Telescope. OzDES is a multi-object spectroscopic survey targeting multiple types of targets at multiple epochs over a multiyear baseline and is one of the first multi-object spectroscopic surveys to dynamically include transients into the target list soon after their discovery. At the end of three years, OzDES has spectroscopically confirmed almost 100 supernovae, and has measured redshifts for 17 000 objects, including the redshifts of 2566 supernova hosts. We examine how our ability to measure redshifts for targets of various types depends on signal-to-noise ratio (S/N), magnitude and exposure time, finding that our redshift success rate increases significantly at a S/N of 2–3 per 1-Å bin. We also find that the change in S/N with exposure time closely matches the Poisson limit for stacked exposures as long as 10 h. We use these results to predict the redshift yield of the full OzDES survey, as well as the potential yields of future surveys on other facilities such as (i.e. the 4-m Multi-Object Spectroscopic Telescope, the Subaru Prime Focus Spectrograph and the Maunakea Spectroscopic Explorer). This work marks the first OzDES data release, comprising 14 693 redshifts. OzDES is on target to obtain over 30 000 redshifts over the 6-yr duration of the survey, including a yield of approximately 5700 supernova host-galaxy redshifts

    Velocity dispersions of clusters in the Dark Energy Survey Y3 redMaPPer catalogue

    Get PDF
    We measure the velocity dispersions of clusters of galaxies selected by the red-sequence Matched-filter Probabilistic Percolation (redMaPPer) algorithm in the first three years of data from the Dark Energy Survey (DES), allowing us to probe cluster selection and richness estimation, λ, in light of cluster dynamics. Our sample consists of 126 clusters with sufficient spectroscopy for individual velocity dispersion estimates. We examine the correlations between cluster velocity dispersion, richness, X-ray temperature, and luminosity, as well as central galaxy velocity offsets. The velocity dispersion-richness relation exhibits a bimodal distribution. The majority of clusters follow scaling relations between velocity dispersion, richness, and X-ray properties similar to those found for previous samples; however, there is a significant population of clusters with velocity dispersions that are high for their richness. These clusters account for roughly 22 per cent of the λ 0.5. A couple of these systems are hot and X-ray bright as expected for massive clusters with richnesses that appear to have been underestimated, but most appear to have high velocity dispersions for their X-ray properties likely due to line-of-sight structure. These results suggest that projection effects contribute significantly to redMaPPer selection, particularly at higher redshifts and lower richnesses. The redMaPPer determined richnesses for the velocity dispersion outliers are consistent with their X-ray properties, but several are X-ray undetected and deeper data are needed to understand their nature

    Modelling the Milky Way : I. Method and first results fitting the thick disc and halo with DES-Y3 data

    Get PDF
    We present a technique to fit the stellar components of the Galaxy by comparing Hess Diagrams (HDs) generated from TRILEGAL models to real data. We apply this technique, which we call MWFITTING, to photometric data from the first 3 yr of the Dark Energy Survey (DES). After removing regions containing known resolved stellar systems such as globular clusters, dwarf galaxies, nearby galaxies, the Large Magellanic Cloud, and the Sagittarius Stream, our main sample spans a total area of ∼2300 deg2. We further explore a smaller subset (∼1300 deg2) that excludes all regions with known stellar streams and stellar overdensities. Validation tests on synthetic data possessing similar properties to the DES data show that the method is able to recover input parameters with a precision better than 3 per cent. We fit the DES data with an exponential thick disc model and an oblate double power-law halo model. We find that the best-fitting thick disc model has radial and vertical scale heights of 2.67 ± 0.09 kpc and 925 ± 40 pc, respectively. The stellar halo is fit with a broken power-law density profile with an oblateness of 0.75 ± 0.01, an inner index of 1.82 ± 0.08, an outer index of 4.14 ± 0.05, and a break at 18.52 ± 0.27 kpc from the Galactic centre. Several previously discovered stellar overdensities are recovered in the residual stellar density map, showing the reliability of MWFITTING in determining the Galactic components. Simulations made with the best-fitting parameters are a promising way to predict Milky Way star counts for surveys such as the LSST and Euclid

    A catalogue of structural and morphological measurements for DES Y1

    Get PDF
    We present a structural and morphological catalogue for 45 million objects selected from the first year data of the Dark Energy Survey (DES). Single S´ersic fits and non-parametric measurements are produced for g, r, and i filters. The parameters from the best-fitting S´ersic model (total magnitude, half-light radius, S´ersic index, axis ratio, and position angle) are measured with GALFIT; the non-parametric coefficients (concentration, asymmetry, clumpiness, Gini, M20) are provided using the Zurich Estimator of Structural Types (ZEST+). To study the statistical uncertainties, we consider a sample of state-of-the-art image simulations with a realistic distribution in the input parameter space and then process and analyse them as we do with real data: this enables us to quantify the observational biases due to PSF blurring and magnitude effects and correct themeasurements as a function ofmagnitude, galaxy size, S´ersic index (concentration for the analysis of the non-parametric measurements) and ellipticity. We present the largest structural catalogue to date: we find that accurate and complete measurements for all the structural parameters are typically obtained for galaxies with SEXTRACTOR MAG AUTO I ≤ 21. Indeed, the parameters in the filters i and r can be overall well recovered up to MAG AUTO ≤ 21.5, corresponding to a fitting completeness of ~90 per cent below this threshold, for a total of 25million galaxies. The combination of parametric and non-parametric structural measurements makes this catalogue an important instrument to explore and understand how galaxies form and evolve. The catalogue described in this paper will be publicly released alongside the DES collaboration Y1 cosmology data products at the following URL: https://des.ncsa.illinois.edu/releases

    Dark Energy Survey Year 3 results : cosmological constraints from galaxy clustering and galaxy-galaxy lensing using the MAGLIM lens sample

    Get PDF
    The cosmological information extracted from photometric surveys is most robust when multiple probes of the large scale structure of the Universe are used. Two of the most sensitive probes are the clustering of galaxies and the tangential shear of background galaxy shapes produced by those foreground galaxies, socalled galaxy-galaxy lensing. Combining the measurements of these two two-point functions leads to cosmological constraints that are independent of the way galaxies trace matter (the galaxy bias factor). The optimal choice of foreground, or lens, galaxies is governed by the joint, but conflicting requirements to obtain accurate redshift information and large statistics. We present cosmological results from the full 5000 deg2 of the Dark Energy Survey’s first three years of observations (Y3) combining those two-point functions, using for the first time a magnitude-limited lens sample (MAGLIM) of 11 million galaxies, especially selected to optimize such combination, and 100 million background shapes. We consider two flat cosmological models, the Standard Model with dark energy and cold dark matter (ΛCDM) a variation with a free parameter for the dark energy equation of state (wCDM). Both models are marginalized over 25 astrophysical and systematic nuisance parameters. In ΛCDM we obtain for the matter density Ωm ¼ 0.320þ0.041 −0.034 and for the clustering amplitude S8 ≡ σ8ðΩm=0.3Þ0.5 ¼ 0.778þ0.037 −0.031 , at 68% C.L. The latter is only 1σ smaller than the prediction in this model informed by measurements of the cosmic microwave background by the Planck satellite. In wCDM we find Ωm ¼ 0.32þ0.044 −0.046 , S8 ¼ 0.777þ0.049 −0.051 and dark energy equation of state w ¼ −1.031þ0.218 −0.379 . We find that including smaller scales, while marginalizing over nonlinear galaxy bias, improves the constraining power in the Ωm − S8 plane by 31% and in the Ωm − w plane by 41% while yielding consistent cosmological parameters from those in the linear bias case. These results are combined with those from cosmic shear in a companion paper to present full DES-Y3 constraints from the three two-point functions (3 × 2pt)

    Shadows in the dark: low-surface-brightness galaxies discovered in the dark energy survey

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencia el que aparece en primer lugar, el nombre del grupo de colaboración, si lo hubiere, y los autores pertenecientes a la UAMWe present a catalog of 23,790 extended low-surface-brightness galaxies (LSBGs) identified in ~5000 deg2 from the first three years of imaging data from the Dark Energy Survey (DES). Based on a single-component Sérsic model fit, we define extended LSBGs as galaxies with g-band effective radii Reff (g) > 2."5 and mean surface brightness μmeff (g )> 24.2 mag arcsec-2. We find that the distribution of LSBGs is strongly bimodal in (g-r) versus (g-i) color space. We divide our sample into red (g-i≥0.60) and blue (g-i 24.0 mag arcsec-2. The wide-area sample of LSBGs in DES can be used to test the role of environment on models of LSBG formation and evolutio
    • …
    corecore