757 research outputs found

    Identification alone versus intraoperative neuromonitoring of the recurrent laryngeal nerve during thyroid surgery: experience of 2034 consecutive patients

    Get PDF
    Background: The aim of this study was to evaluate the ability of intraoperative neuromonitoring in reducing the postoperative recurrent laryngeal nerve palsy rate by a comparison between patients submitted to thyroidectomy with intraoperative neuromonitoring and with routine identification alone. Methods: Between June 2007 and December 2012, 2034 consecutive patients underwent thyroidectomy by a single surgical team. We compared patients who have had neuromonitoring and patients who have undergone surgery with nerve visualization alone. Patients in which neuromonitoring was not utilized (Group A) were 993, patients in which was utilized (group B) were 1041. Results: In group A 28 recurrent laryngeal nerve injuries were observed (2.82%), 21 (2.11%) transient and 7 (0.7%) permanent. In group B 23 recurrent laryngeal nerve injuries were observed (2.21%), in 17 cases (1.63%) transient and in 6 (0.58%) permanent. Differences were not statistically significative. Conclusions: Visual nerve identification remains the gold standard of recurrent laryngeal nerve management in thyroid surgery. Neuromonitoring helps to identify the nerve, in particular in difficult cases, but it did not decrease nerve injuries compared with visualization alone. Future studies are warranted to evaluate the benefit of intraoperative neuromonitoring in thyroidectomy, especially in conditions in which the recurrent nerve is at high risk of injury. Keywords: Neuromonitoring, Recurrent laryngeal nerve, Thyroidectom

    Rogue wave formation scenarios for the focusing nonlinear Schr\"odinger equation with parabolic-profile initial data on a compact support

    Full text link
    We study the (1+1) focusing nonlinear Schroedinger (NLS) equation for an initial condition with concave parabolic profile on a compact support and phase depending quadratically on the spatial coordinate. In the absence of dispersion, using the natural class of self-similar solutions of the resulting elliptic system, we generalise a result by Talanov, Guervich and Shvartsburg, finding a criterion on the chirp and modulus coefficients at time equal zero to determine whether the dispersionless solution features asymptotic relaxation or a blow-up at fine time, providing an explicit formula for the time of catastrophe. In the presence of dispersion, we numerically show that the same criterion determines, even beyond the semi-classical regime, whether the solution relaxes or develops a higher order rogue wave, whose amplitude can be several multiples of the height of the initial parabola. In the latter case, for small dispersion, the time of catastrophe for the corresponding dispersionless solution predicts almost exactly the onset time of the rogue wave. In our numerical experiments, the sign of the chirp appears to determine the prevailing scenario, among two competing mechanisms leading to the formation of a rogue wave. For negative values, the simulations are suggestive of the dispersive regularisation of a gradient catastrophe described by Bertola and Tovbis for a different class of smooth, bell-shaped initial data. As the chirp becomes positive, the rogue wave seem to result from the interaction of counter-propagating dispersive dam break flows, as described for the box problem by El, Khamis and Tovbis. As the chirp and amplitude of the initial profile are relatively easy to manipulate in optical devices and water tank wave generators, we expect our observation to be relevant for experiments in nonlinear optics and fluid dynamics.Comment: 17 pages, 5 figures, 1 tabl

    Rogue wave formation scenarios for the focusing nonlinear Schrödinger equation with parabolic-profile initial data on a compact support

    Get PDF
    We study the (1+1) focusing nonlinear Schrödinger equation for an initial condition with compactly supported parabolic profile and phase depending quadratically on the spatial coordinate. In the absence of dispersion, using the natural class of self-similar solutions, we provide a criterion for blowup in finite time, generalizing a result by Talanov et al. In the presence of dispersion, we numerically show that the same criterion determines, even beyond the semiclassical regime, whether the solution relaxes or develops a high-order rogue wave, whose onset time is predicted by the corresponding dispersionless catastrophe time. The sign of the chirp appears to determine the prevailing scenario among two competing mechanisms for rogue wave formation. For negative values, the numerical simulations are suggestive of the dispersive regularization of a gradient catastrophe described by Bertola and Tovbis for a different class of smooth, bell-shaped initial data. As the chirp becomes positive, the rogue wave seems to result from the interaction of counterpropagating dispersive dam break flows, as in the box problem recently studied by El, Khamis, and Tovbis. As the chirp and amplitude of the initial profile are relatively easy to manipulate in optical devices and water tank wave generators, we expect our observation to be relevant for experiments in nonlinear optics and fluid dynamics

    Hydroxyindole-O-methyltransferase (HIOMT) activity in the retina of melatonin-proficient mice

    Get PDF
    Numerous pieces of evidence support the expression by the mammalian retina of Hydroxyindole-O-methyltransferase (HIOMT, EC 2.1.1.4), the enzyme directly responsible for the biosynthesis of the pineal chronobiotic hormone melatonin (MLT). However, conflicting results obtained so far by enzyme-kinetic and immune-detection techniques still make HIOMT presence and relevance in the eye a matter of debate. This work aimed at evaluating unambiguously HIOMT activity in the mouse retina, a valuable model for studying the effects of MLT variations on ocular pathophysiology. Since laboratory mouse strains can bear genetic polymorphisms yielding defective enzymes of MLT biosynthesis, retinas and control pineal glands used in this study were obtained in a MLT-proficient crossing of A/J mice, the A/J/C57BL/10 strain. To improve the radiochemical reference assay, we tested different homogenization procedures coupled with HPLC detection. Concomitantly, we quantified MLT, and its precursor N-acetyl-serotonin (NAS) by HPLC coupled to electrochemical detection in retinas isolated from either light- or dark-adapted mice. Results showed that the standard radio-chemical assay was successful for pineal HIOMT only, whereas specific homogenization buffers and HPLC were required to detect retinal activity, presumably due to interfering methyl-transferases inhibited by NAS. Under present conditions, retinal HIOMT Vmax accounted for by ≈ 40 fmol/h/mg protein, 2.6-hundreds-fold lower than the pineal counterpart, displaying equivalent KMs (≈10 μM). Moreover, NAS and MLT rapidly decreased in light-exposed isolated retinas, corroborating light-sensitive in-situ MLT formation. Conclusively, we measured mouse retinal HIOMT kinetics under basal conditions, a useful result to elucidate the regulatory patterns, the possible impact on eye health, and therapeutic approaches related to this enzyme

    Exploring perinatal asphyxia by metabolomics

    Get PDF
    Brain damage related to perinatal asphyxia is the second cause of neuro-disability worldwide. Its incidence was estimated in 2010 as 8.5 cases per 1000 live births worldwide, with no further recent improvement even in more industrialized countries. If so, hypoxic-ischemic encephalopathy is still an issue of global health concern. It is thought that a consistent number of cases may be avoided, and its sequelae may be preventable by a prompt and efficient physical and therapeutic treatment. The lack of early, reliable, and specific biomarkers has up to now hampered a more effective use of hypothermia, which represents the only validated therapy for this condition. The urge to unravel the biological modifications underlying perinatal asphyxia and hypoxic-ischemic encephalopathy needs new diagnostic and therapeutic tools. Metabolomics for its own features is a powerful approach that may help for the identification of specific metabolic profiles related to the pathological mechanism and foreseeable outcome. The metabolomic profiles of animal and human infants exposed to perinatal asphyxia or developing hypoxic-ischemic encephalopathy have so far been investigated by means of 1H nuclear magnetic resonance spectroscopy and mass spectrometry coupled with gas or liquid chromatography, leading to the identification of promising metabolomic signatures. In this work, an extensive review of the relevant literature was performed
    • …
    corecore