11 research outputs found

    Sapucaia nut (Lecythis pisonis Cambess) and its by-products: a promising and underutilized source of bioactive compounds. Part II: phenolic compounds profile.

    Get PDF
    In this study, the profile of the bioactive compounds of sapucaia nut (Lecythis pisonis Cambess) and its byproducts have been investigated. The phenolic profile by LC-ESI-MS/MS, the total phenolic content, the condensed tannins and the antioxidant activity of the sapucaia nut and shell were determined. 14 phenolic compounds were identified in the sapucaia nut extract, primarily phenolic acids and flavonoids. Catechin, epicatechin, myricetin, ellagic acid and ferulic acid presented significant correlation to the antioxidant activity. The sapucaia shell contained 22 phenolic compounds, 13 of which were quantified. The sapucaia shell extract showed a high content of total phenolic compounds, a high condensed tannins content, and high antioxidant activity. The higher antioxidant activity of the shell can be associated with a higher content of phenolics. Overall, it can be concluded that the sapucaia nut is a raw material rich in phenolic compounds that present high antioxidant activity. The nuts and the cake may be used as a promising raw material for the food industry, while the shells could be an alternative source of natural antioxidants. Further use in the cosmetics and pharmaceutical industry may also be envisaged. 1. Introduction Lecythis pisonis

    Sapucaia nut (Lecythis pisonis Cambess) and its by-products: a promising and underutilized source of bioactive compounds. Part I: nutritional composition and lipid profile.

    Get PDF
    The nutritional composition of the sapucaia nut, cake and shell, the nut and cake minerals content and the lipid profile of the nut oil (fatty acids, tocopherols, phytosterols and triacylglycerols) were determined. The nuts and cake exhibited a high content of lipid (47.9 to 60.8 mg 100 g-1), protein (15.8 to 19.5 mg 100 g-1), dietary fiber (16.5 to 22.6 mg 100 g-1) and provided an excellent source of selenium (26.4 to 46.94 μg g-1). The oil contained a high amount of unsaturated fatty acids (39.7 to 45.4% of oleic and 32.2 to 46.6% of linoleic acids) and presented a high Oxidative Stability Index (8.57-12.95 h) indicating the presence of antioxidant compounds in the oil. The major triacylglycerols in the sapucaia oil were LLO, PLO, LOO, POO, OOO, PLL and LLL. The main bioactive lipids identified in the oil were γ-tocopherol (19.2 to 28.5 mg 100 g-1) and β-sitosterol (92.8 to 194 mg 100 g-1). The results showed that the sapucaia nut and its by-products are a promising natural source of bioactive and nutritional compounds and when present in the diet can contribute to the maintenance of human health. In addition, the nut and by-product represents a promising raw material for the food industry

    Sapucaia nut (Lecythis pisonis Cambess) and its by-products: a promising and underutilized source of bioactive compounds. Part II: phenolic compounds profile.

    No full text
    In this study, the profile of the bioactive compounds of sapucaia nut (Lecythis pisonis Cambess) and its byproducts have been investigated. The phenolic profile by LC-ESI-MS/MS, the total phenolic content, the condensed tannins and the antioxidant activity of the sapucaia nut and shell were determined. 14 phenolic compounds were identified in the sapucaia nut extract, primarily phenolic acids and flavonoids. Catechin, epicatechin, myricetin, ellagic acid and ferulic acid presented significant correlation to the antioxidant activity. The sapucaia shell contained 22 phenolic compounds, 13 of which were quantified. The sapucaia shell extract showed a high content of total phenolic compounds, a high condensed tannins content, and high antioxidant activity. The higher antioxidant activity of the shell can be associated with a higher content of phenolics. Overall, it can be concluded that the sapucaia nut is a raw material rich in phenolic compounds that present high antioxidant activity. The nuts and the cake may be used as a promising raw material for the food industry, while the shells could be an alternative source of natural antioxidants. Further use in the cosmetics and pharmaceutical industry may also be envisaged. 1. Introduction Lecythis pisonis .Made available in DSpace on 2018-12-12T00:07:19Z (GMT). No. of bitstreams: 1 SAPUCAIANUT.PARTIIv.1122018.pdf: 203934 bytes, checksum: a2056b896b9f59023a564ae3d5574c07 (MD5) Previous issue date: 2018-12-11bitstream/item/188190/1/SAPUCAIA-NUT.-PART-II-v.-112-2018-.pd

    Sapucaia nut (Lecythis pisonis Cambess) and its by-products: a promising and underutilized source of bioactive compounds. Part I: nutritional composition and lipid profile.

    No full text
    The nutritional composition of the sapucaia nut, cake and shell, the nut and cake minerals content and the lipid profile of the nut oil (fatty acids, tocopherols, phytosterols and triacylglycerols) were determined. The nuts and cake exhibited a high content of lipid (47.9 to 60.8 mg 100 g-1), protein (15.8 to 19.5 mg 100 g-1), dietary fiber (16.5 to 22.6 mg 100 g-1) and provided an excellent source of selenium (26.4 to 46.94 μg g-1). The oil contained a high amount of unsaturated fatty acids (39.7 to 45.4% of oleic and 32.2 to 46.6% of linoleic acids) and presented a high Oxidative Stability Index (8.57-12.95 h) indicating the presence of antioxidant compounds in the oil. The major triacylglycerols in the sapucaia oil were LLO, PLO, LOO, POO, OOO, PLL and LLL. The main bioactive lipids identified in the oil were γ-tocopherol (19.2 to 28.5 mg 100 g-1) and β-sitosterol (92.8 to 194 mg 100 g-1). The results showed that the sapucaia nut and its by-products are a promising natural source of bioactive and nutritional compounds and when present in the diet can contribute to the maintenance of human health. In addition, the nut and by-product represents a promising raw material for the food industry.Made available in DSpace on 2018-12-12T00:06:59Z (GMT). No. of bitstreams: 1 SAPUCAIANUT.PARTIFoodResearchInternationalv.1082018.pdf: 286573 bytes, checksum: dadd88429f48ce4179cd23f148fb2364 (MD5) Previous issue date: 2018-12-11bitstream/item/188186/1/SAPUCAIA-NUT.-PART-I-Food-Research-International-v.-108-2018-.pd

    Gene duplication as a major force driving the genome expansion in some giant viruses

    No full text
    International audienceGiant viruses with their gigantic genomes are among the most intriguing components of the virosphere. How these viruses attained such giant genomes remains unclear, despite considerable efforts to understand this phenomenon. Here, we describe the discovery of cedratvirus pambiensis, an amoebal giant virus isolated in Brazil. Although the virion morphology and replication cycle of c. pambiensis are very similar to those described for other cedratviruses, whole genome sequencing revealed the largest cedratvirus genome ever described, with 623,564 base pairs and 842 predicted protein-coding genes (among them, 76 ORFans). Genome analysis has revealed an unprecedented number of paralogous genes, with ~73% of the c. pambiensis genome being composed of genes with two or more copies. Large families of functionally diverse paralogous genes included up to >70 copies and were distributed across the genome. The in-depth investigation of the mechanisms and origins of gene duplications revealed that both tandem-like duplications and distal transfer of syntenic blocks of genes contributed to the c. pambiensis genomic expansion. Finally, a comprehensive genome analysis of viruses from all known giant virus families suggested that gene duplication is one of the key mechanisms underlying genomic gigantism across the phylum Nucleocytoviricota . The expansion of viral genomes through successive duplications followed by subfunctionalization and exaptation of the paralogous gene copies may promote the adaptation of giant viruses to a variety of niches. IMPORTANCE Giant viruses are noteworthy not only due to their enormous particles but also because of their gigantic genomes. In this context, a fundamental question has persisted: how did these genomes evolve? Here we present the discovery of cedratvirus pambiensis, featuring the largest genome ever described for a cedratvirus. Our data suggest that the larger size of the genome can be attributed to an unprecedented number of duplicated genes. Further investigation of this phenomenon in other viruses has illuminated gene duplication as a key evolutionary mechanism driving genome expansion in diverse giant viruses. Although gene duplication has been described as a recurrent event in cellular organisms, our data highlights its potential as a pivotal event in the evolution of gigantic viral genomes
    corecore