150 research outputs found

    Structural characterization of phytotoxic terpenoids from Cestrum parqui.

    Get PDF
    Isolation, chemical characterization and phytotoxicity of nine polyhydroxylated terpenes (five C13 nor-isoprenoids, two sesquiterpenes, a spirostane and a pseudosapogenin) from Cestrum parqui LHerr are reported. In this work we completed the phytochemical investigation of the terpenic fraction of the plant and described the structural elucidation of polar isoprenoids using NMR methods. All the configurations of the compounds have been assigned by NOESY experiments. Four new structures have been identified as (3S,5R,6R,7E,9R)-5,6,9-trihydroxy-3-isopropyloxy-7-megastigmene, 5a-spirostan-3b,12b,15a-triol, and 26-O-(30-isopentanoyl)-b-Dglucopyranosyl- 5a-furost-20(22)-ene-3b,26-diol, and as an unusual tricyclic sesquiterpene. The compounds have been assayed for their phytotoxicity on lettuce at the concentrations ranging between 104 and 107 M. The activities of some compounds were similar to that of the herbicide pendimethalin

    Chemical Constituents of the Aquatic Plant Schoenoplectus lacustris: Evaluation of Phytotoxic Effects on the Green Alga Selenastrum capricornutum.

    No full text
    Forty-nine secondary metabolites were isolated from aqueous and alcoholic extracts of the aquatic plant Shoenoplectus lacustris. All compounds were characterized based on spectroscopic data. Eleven free and glycosylated low-molecular polyphenols, 17 cinnamic acid and dihydrocinnamic acid derivatives, 11 flavonoids, and 10 C13 nor-isoprenoids were identified. The structure of the new compound, 1-benzoyl-glycerol-2-a-L-arabinopyranoside, was elucidated by 2D NMR experiments (COSY, HSQC, HMBC, NOESY). To evaluate potential phytotoxic effects, all compounds were tested on the green alga Selenastrum capricornutum, a unicellular organism commonly used in tests of toxicity as a bioindicator of eutrophic sites. The most active compound was (j)-catechin, showing an inhibition similar to that of the algaecide CuSO4

    A mild photochemical approach to the degradation of phenols from olive oil mill wastewater

    No full text
    Photooxidation of cathecol (1) is carried out in aqueous solution at k > 300 nm using different sensitizers: rose bengal (RB), 9,10-dicyanoanthracene (DCA), 2,4,6-triphenylpyrylium tetrafluoroborate (Pyryl). The highest degradation is observed in the UV/RB-sensitized reaction (66% after 15 h of irradiation), mineralization and formation of dimers are the final events. This procedure has been extended to tyrosol (2), caffeic acid (3), vanillic acid (4), 4-hydroxycinnamic acid (5) and 4-hydroxybenzoic acid (6) as well as to a mixture of all phenols. A reduced toxicity of the UV/RB-irradiated solutions of cathecol and tyrosol towards alga Ankistrodesmus braunii is also verified

    Naphthalenone polyketides produced by Neofusicoccum parvum , a fungus associated with grapevine Botriosphaeria dieback

    Get PDF
    A strain of Neofusicoccum parvum isolated from declining vines was pathogenic to grapevine cultivar Inzolia in Sicily. This strain produced some metabolites in liquid medium. Crude extract, through a bio-guided purification process, yielded four naphthalenone polyketides. They were identified by comparison with spectroscopic data and optical proprieties reported in literature as: (3S, 4S)-7-ethyl-3,4,8-trihydroxy-6-methoxy-3,4-dihydro-1-(2H)-naphthalenone, (3S*, 4S*)-3,4-dihydro-3,4,8-trihydroxy-7-(1-hydroxyethyl)-6-methoxy-1-(2H)-naphthalenone, (4S)-3,4-dihydro-4,8-dihydroxy-1-(2H)-naphthalenone, named botryosphaerones D and A, isosclerone, respectively, and (3S*,4S*)-3,4,5-trihydroxy-1-tetralone (1-4). Phytotoxic activity of the isolated compounds (1-4) was tested on grapevine leaves at using the leaf puncture assay. All tested compounds were phytotoxic, with botryosphaerone D showing the greatest activity. The phytotoxic effects decreased when treated leaves were exposed to light. All of the metabolites did not show in vitro antifungal activity against Diplodia seriata, Lasiodiplodia mediterranea, Neofusicoccum vitifusiforme, or Phytophthora citrophthora. This is the first report of in vitro production of botryosphaerones D and A, and 3,4,5-trihydroxy-1-tetralone by N. parvum

    In Vitro Evaluation of Antiviral Activities of Funicone-like Compounds Vermistatin and Penisimplicissin against Canine Coronavirus Infection

    Get PDF
    Recent studies have demonstrated that 3-O-methylfunicone (OMF), a fungal secondary metabolite from Talaromyces pinophilus belonging to the class of funicone-like compounds, has antiviral activity against canine coronaviruses (CCoV), which causes enteritis in dogs. Herein, we selected two additional funicone-like compounds named vermistatin (VER) and penisimplicissin (PS) and investigated their inhibitory activity towards CCoV infection. Thus, both compounds have been tested for their cytotoxicity and for antiviral activity against CCoV in A72 cells, a fibrosarcoma cell line suitable for investigating CCoV. Our findings showed an increase in cell viability, with an improvement of morphological features in CCoV-infected cells at the non-toxic doses of 1 μM for VER and 0.5 μM for PS. In addition, we observed that these compounds caused a strong inhibition in the expression of the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor which is activated during CCoV infection. Our results also showed the alkalinization of lysosomes in the presence of VER or PS, which may be involved in the observed antiviral activities

    3-Amino-1-methyl-9,10-dihydro­phenanthrene-2,4-dicarbonitrile

    Get PDF
    The asymmetric unit of the title compound, C17H13N3, contains two independent mol­ecules, which are non-planar as they are buckled owing to the ethyl­ene portion. The dihedral angle between the benzene rings is 26.4 (1)° in one mol­ecule and 32.9 (1)° in the other. In the crystal, the mol­ecules are disposed about a false inversion center, and are linked by two N—H⋯N hydrogen bonds, generating a dimer. The dimers are linked by further N—H⋯N hydrogen bonds, resulting in a chain that runs along the longest axis of the ortho­rhom­bic unit cell

    STUDIES ON AQUATIC PLANTS .16. STIGMASTEROLS FROM TYPHA-LATIFOLIA

    No full text
    Several free and acylglucosylated stigmasterols have been isolated from the aquatic plant Typha latifolia. The structures of three novel acylglucosylsterols have been assigned on the basis of spectroscopic data and by chemical modification studies. © 1990, American Chemical Society. All rights reserved

    Toxicity and Risk of Transformation Products of Emerging Contaminants for Aquatic Organisms: Pharmaceutical Case Studies

    No full text
    Discussion about the environmental consequences of the presence of pharmaceuticals has taken place in the general absence of a systematic analysis of the potential risk. The lack of such an analysis means that, to date, decisions concerning environmental risk assessment criteria and/or regulatory thresholds have been somewhat arbitrary or based upon inappropriate groups of industrial chemicals. This chapter attempts to address this deficiency and collates examples of data relating to the ecotoxicity of existing pharmaceutical transformation photoproducts (TPs). The intention is to provide a perspective that will prove useful during the further development of assessment criteria. The database may also prove useful in the context of risk assessment of individual substances. There are mainly two different and independent approaches to assessing the risk associated with transformation product formation. We analyze these two approaches for transformation products coming from irradiation of pharmaceuticals under environment-like conditions
    corecore