3 research outputs found

    High-density lipoprotein contribute to G0-G1/S transition in Swiss NIH/3T3 fibroblasts

    Get PDF
    High density lipoproteins (HDLs) play a crucial role in removing excess cholesterol from peripheral tissues. Although their concentration is lower during conditions of high cell growth rate (cancer and infections), their involvement during cell proliferation is not known. To this aim, we investigated the replicative cycles in synchronized Swiss 3T3 fibroblasts in different experimental conditions: i) contact-inhibited fibroblasts re-entering cell cycle after dilution; ii) scratch-wound assay; iii) serum deprived cells induced to re-enter G1 by FCS, HDL or PDGF. Analyses were performed during each cell cycle up to quiescence. Cholesterol synthesis increased remarkably during the replicative cycles, decreasing only after cells reached confluence. In contrast, cholesteryl ester (CE) synthesis and content were high at 24h after dilution and then decreased steeply in the successive cycles. Flow cytometry analysis of DiO-HDL, as well as radiolabeled HDL pulse, demonstrated a significant uptake of CE-HDL in 24h. DiI-HDL uptake, lipid droplets (LDs) and SR-BI immunostaining and expression followed the same trend. Addition of HDL or PDGF partially restore the proliferation rate and significantly increase SR-BI and pAKT expression in serum-deprived cells. In conclusion, cell transition from G0 to G1/S requires CE-HDL uptake, leading to CE-HDL/SR-BI pathway activation and CEs increase into LDs

    Tricyclic Pyrazoles. Part 5. Novel 1,4-Dihydroindeno[1,2-]pyrazole CB2 Ligands Using Molecular Hybridization Based on Scaffold Hopping

    No full text
    In search of new selective CB2 ligands, the synthesis and preliminary biological evaluation of novel 1,4-dihydroindeno[1,2-c]pyrazole hybrids of the highly potent prototypicals 5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-N-fenchyl-1H-pyrazole-3-carboxamide 1 and 1-(2,4-dichlorophenyl)-6-methyl-N-(piperidin-1-yl)-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxamide 2 are detailed. We postulated that the introduction of those pharmacophoric elements essential for activity of 1 in the tricyclic core of 2 might provide CB2 ligands with further improved receptor selectivity and biological activity. Among the compounds, 6-chloro-7-methyl-1-(2,4-dichlorophenyl)-N-fenchyl-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxamide (22) exhibited low two digit nanomolar affinity for the cannabinoid CB2R and maintained a high level of CB2-selectivity
    corecore