252 research outputs found
Mechanism of Thermal Conductivity Reduction in Few-Layer Graphene
Using the linearized Boltzmann transport equation and perturbation theory, we
analyze the reduction in the intrinsic thermal conductivity of few-layer
graphene sheets accounting for all possible three-phonon scattering events.
Even with weak coupling between layers, a significant reduction in the thermal
conductivity of the out-of-plane acoustic modes is apparent. The main effect of
this weak coupling is to open many new three-phonon scattering channels that
are otherwise absent in graphene. However, reflection symmetry is only weakly
broken with the addition of multiple layers, and ZA phonons still dominate
thermal conductivity. We also find that reduction in thermal conductivity is
mainly caused by lower contributions of the higher-order overtones of the
fundamental out-of-plane acoustic mode. The results compare remarkably well
over the entire temperature range with measurements of graphene and graphite
The ferroelectric Mott-Hubbard phase of organic (TMTTF)2X conductors
We present experimental evidences for a ferro-electric transition in the
family of quasi one- dimensional conductors (TMTTF)2X. We interpret this new
transition in the frame of the combined Mott-Hubbard state taking into account
the double action of the spontaneous charge disproportionation on the TMTTF
molecular stacks and of the X anionic potentials
Evolving properties of two dimensional materials, from graphene to graphite
We have studied theoretically, using density functional theory, several
materials properties when going from one C layer in graphene to two and three g
raphene layers and on to graphite. The properties we have focused on are the
elastic constants, electronic structure (energy bands and density of state s),
and the dielectric properties. For any of the properties we have investigated
the modification due to an increase in the number of graphene layers is within
a few percent. Our results are in agreement with the analysis presented
recently by Kopelevich and Esquinazi (unpublished)
Dielectric response of charge induced correlated state in the quasi-one-dimensional conductor (TMTTF)2PF6
Conductivity and permittivity of the quasi-one-dimensionsional organic
transfer salt (TMTTF)2PF6 have been measured at low frequencies (10^3-10^7 Hz)
between room temperature down to below the temperature of transition into the
spin-Peierls state. We interpret the huge real part of the dielectric
permittivity (up to 10^6) in the localized state as the realization in this
compound of a charge ordered state of Wigner crystal type due to long range
Coulomb interaction.Comment: 11 pages, 3 .eps figure
Bandwidth-controlled Mott transition in I. Optical studies of localized charge excitations
Infrared reflection measurements of the half-filled two-dimensional organic
conductors -(BEDT-TTF)Cu[N(CN)]BrCl were
performed as a function of temperature ( K) and
Br-substitution (, 40%, 73%, 85%, and 90%) in order to study the
metal-insulator transition. We can distinguish absorption processes due to
itinerant and localized charge carriers. The broad mid-infrared absorption has
two contributions: transitions between the two Hubbard bands and intradimer
excitations from the charges localized on the (BEDT-TTF) dimer. Since the
latter couple to intramolecular vibrations of BEDT-TTF, the analysis of both
electronic and vibrational features provides a tool to disentangle these
contributions and to follow their temperature and electronic-correlations
dependence. Calculations based on the cluster model support our interpretation.Comment: 12 pages, 12 figure
The cystic fibrosis microbiome in an ecological perspective and its impact in antibiotic therapy
The recent focus on the cystic fibrosis (CF) complex microbiome has led to the recognition that the microbes can interact between them and with the host immune system, affecting the disease progression and treatment routes. Although the main focus remains on the interactions between traditional pathogens, growing evidence supports the contribution and the role of emergent species. Understanding the mechanisms and the biological effects involved in polymicrobial interactions may be the key to improve effective therapies and also to define new strategies for disease control. This review focuses on the interactions between microbe-microbe and host-microbe, from an ecological point of view, discussing their impact on CF disease progression. There are increasing indications that these interactions impact the success of antimicrobial therapy. Consequently, a new approach where therapy is personalized to patients by taking into account their individual CF microbiome is suggested.Portuguese Foundation for Science and Technology (FCT), the strategic funding of UID/BIO/04469/2013-CEB and UID/EQU/00511/2013-LEPABE units. This study was also supported by FCT and the European Community fund FEDER, through Program COMPETE, under the scope of the Projects “DNA mimics” PIC/IC/82815/2007, RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462), “BioHealth—Biotechnology and Bioengineering approaches to improve health quality”, Ref. NORTE-07-0124-FEDER-000027 and NORTE-07-0124-FEDER-000025—RL2_ Environment and Health, co-funded by the Programa Operacional Regional do Norte (ON.2 – O Novo Norte), QREN, FEDER. The authors also acknowledge the grant of Susana P. Lopes (SFRH/BPD/95616/2013) and of the COST-Action TD1004: Theragnostics for imaging and therapy
- …