24 research outputs found

    Insecticidal Activity of the Granulosis Virus in Combination with Neem Products and Talc Powder Against the Potato Tuberworm Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae)

    Get PDF
    The potato tuberworm Phthorimaea operculella (Zeller) is an important agricultural pest that causes significant economic losses to potato growers worldwide. The addition of an effective method of biological control for the potato tuberworm is greatly needed, and is currently unavailable in Brazil. The granulosis virus (Baculoviridae) is a promising biological control agent to protect post-harvest potatoes and in storage from the potato tuberworm. However, the control measure must be economically feasible. Liquid suspensions of a granulosis virus applied alone or in mixture with two commercial neem oil-based products (DalNeem (TM) and NeemAzal (TM)), and a dry powder formulation of viral granules were evaluated for control of potato tuberworm larvae by treating potato tubers under laboratory conditions. High larval mortality (86.7%) was achieved when DalNeem and virus were applied together at 4 mg of azadirachtin/L and 10(4) occlusion bodies (OBs)/mL, respectively. This combination resulted in a parts per thousand yen50% efficacy in relation to their counterparts alone. Conversely, NeemAzal did not enhance virus effectiveness against larvae of the potato tuberworm. The talc-based virus formulation was used for dusting seed tubers at different concentrations and resulted in 100% larval mortality at 5 x 10(8) OBs/g. Formulated and unformulated virus provided 50% mortality at 166 OBs/g and at 5.0 x 10(5) OBs/mL, respectively. As a result, talc-based virus formulation had a better control efficiency on potato tuberworm than the aqueous virus suspension. The granulosis virus combined with DalNeem at low rates or formulated with talc powder is a viable option to control the potato tuberworm under storage conditions.CAPES (Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior)Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES

    Resistência de conídios do fungo Neozygites sp à luz ultravioleta.

    Get PDF
    O fungo Neozygites sp é um patógeno de ocorrência natural do ácaro verde da mandioca, Mononychellus tanajoa. No presente trabalho foi estudada a ação da irradiação de luz ultra violeta, dado ao duplo interesse: genético fundamental em ser utilizado como possível marcador e indutor de mutação, e aplicado, pela sobrevivência de conídios em campo. A sobrevivência de conídios primários foi avaliada pela posterior formação de capilliconidios ou conídios secundários, dado que a inviabilidade de conídios primários se reflete principalmente pela falta de formação dos secundários. Os conídios primários foram obtidos em Placa de Petri em agar agua, e submetidos as doses de 0, 10, 20, 30 e 40 segundos de irradiação no comprimento de onda curta de 254 nm. Houve um decréscimo da sobrevivência de conídios primários proporcional ao aumento das doses de irradiação, com variação das respostas para as mesmas doses. A sobrevivência dos conídios obtidos em diferentes tempos, nas mesmas condições mostraram diferentes DL 50, demonstrando existir uma variabilidade natural para o caráter em estudo

    Effects of soybean proteinase inhibitors on development of the soil mite Scheloribates praeincisus (Acari : Oribatida)

    No full text
    Proteinase inhibitors (PI) are present in plant tissues, especially in seeds, and act as a defense mechanism against herbivores and pathogens. Serine PI from soybean such as Bowman-Birk (BBPI) and Kunitz have been used to enhance resistance of sugarcane varieties to the sugarcane borer Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae), the major pest of this crop. The use of these genetically-modified plants (GM) expressing PI requires knowledge of its sustainability and environmental safety, determining the stability of the introduced characteristic and its effects on non-target organisms. The objective of this study was to evaluate direct effects of ingestion of semi-purified and purified soybean PI and GM sugarcane plants on the soil-dwelling mite Scheloribates praeincisus (Berlese) (Acari: Oribatida). This mite is abundant in agricultural soils and participates in the process of organic matter decomposition; for this reason it will be exposed to PI by feeding on GM plant debris. Eggs of S. praeincisus were isolated and after larvae emerged, immatures were fed milled sugarcane leaves added to semi-purified or purified PI (Kunitz and BBPI) or immatures were fed GM sugarcane varieties expressing Kunitz and BBPI type PI or the untransformed near isogenic parental line variety as a control. Developmental time (larva-adult) and survival of S. praeincisus was evaluated. Neither Kunitz nor BBPI affected S. praeincisus survival. On the other hand, ingestion of semi-purified and purified Kunitz inhibitor diminished duration of S. praeincisus immature stages. Ingestion of GM senescent leaves did not have an effect on S. praeincisus immature developmental time and survival, compared to ingestion of leaves from the isogenic parental plants. These results indicate that cultivation of these transgenic sugarcane plants is safe for the non-target species S. praeincisus

    The effect of host plants on Tetranychus evansi, Tetranychus urticae (Acari: Tetranychidae) and on their fungal pathogen Neozygites floridana (Entomophthorales: Neozygitaceae)

    Get PDF
    In a series of tritrophic-level interaction experiments, the effect of selected host plants of the spider mites, Tetranychus evansi and Tetranychus urticae, on Neozygites floridana was studied by evaluating the attachment of capilliconidia, presence of hyphal bodies in the infected mites, mortality from fungal infection, mummification and sporulation from fungus-killed mite cadavers. Host plants tested for T. evansi were tomato, cherry tomato, eggplant, nightshade, and pepper while host plants tested for T. urticae were strawberry, jack bean, cotton and Gerbera. Oviposition rate of the mites on each plant was determined to infer host plant suitability while host-switching determined antibiosis effect on fungal activity. T. evansi had a high oviposition on eggplant, tomato and nightshade but not on cherry tomato and pepper. T. urticae on jack bean resulted in a higher oviposition than on strawberry, cotton and Gerbera. Attachment of capilliconidia to the T. evansi body, presence of hyphal bodies in infected T. evansi and mortality from fungal infection were significantly higher on pepper, nightshade and tomato. The highest level of T. evansi mummification was observed on tomato. T. evansi cadavers from tomato and eggplant produced more primary conidia than those from cherry tomato, nightshade and pepper. Switching N. floridana infected T. evansi from one of five Solanaceous host plants to tomato had no prominent effect on N. floridana performance. For T. urticae, strawberry and jack bean provided the best N. floridana performance when considering all measured parameters. Strawberry also had the highest primary conidia production. This study shows that performance of N. floridana can vary with host plants and may be an important factor for the development of N. floridana epizootics. (C) 2011 Elsevier Inc. All rights reserved.Academy of Sciences for the Developing World (TWAS)Brazilian National Council for Scientific and Technological Development (CNPq)Norwegian Foundation for Research Levy on Agricultural Products (FFL)Agricultural Agreement Research Funds (JA)[190407/110

    Scaling up tests on virulence of the cassava green mite fungal pathogen Neozygites tanajoae (Entomophthorales: Neozygitaceae) under controlled conditions: first observations at the population level

    No full text
    Virulence of entomopathogens is often measured at the individual level using a single host individual or a group of host individuals. To what extent these virulence assessments reflect the impact of an entomopathogen on their host in the field remains largely untested, however. A methodology was developed to induce epizootics of the cassava green mite fungal pathogen Neozygites tanajoae under controlled conditions to evaluate population-level virulence of two (one Beninese and one Brazilian) isolates of the entomopathogen-which had shown similar individual-level virulence but different field impacts. In unrepeated separate experiments we inoculated mite-infested potted cassava plants with either 50 or 25 live mites (high and low inoculum) previously exposed to spores of N. tanajoae and monitored the development of fungal infections for each isolate under the same conditions. Both isolates caused mite infections and an associated decline in host mite populations relative to the control (without fungus) in all experiments, but prevalence of the fungus varied with isolate and increased with inoculum density. Peak infection levels were 90% for the Beninese isolate and 36% for the Brazilian isolate at high inoculum density, and respectively 17% and 25% at low inoculum density. We also measured dispersal from inoculated plants and found that spore dispersal increased with host infection levels, independent of host densities, whereas mite dispersal varied between isolates. These results demonstrate that epizootiology of N. tanajoae can be studied under controlled conditions and suggest that virulence tests at the population level may help to better predict performance of fungal isolates than individual-level tests

    Impact of natural epizootics of the fungal pathogen Neozygites floridana (Zygomycetes: Entomophthorales) on population dynamics of Tetranychus evansi (Acari: Tetranychidae) in tomato and nightshade

    No full text
    The tomato red spider mite, Tetranychus evansi (Acari: Tetranychidae) was recently introduced in Africa and Europe, where there is an increasing interest in using natural enemies to control this pest on solanaceous crops. Two promising candidates for the control of T. evansi were identified in South America, the fungal pathogen, Neozygites floridana and the predatory mite Phytoseiulus longipes. In this study, population dynamics of T. evansi and its natural enemies together with the influence of environmental conditions on these organisms were evaluated during four crop cycles in the field and in a protected environment on nightshade and tomato plants with and without application of chemical pesticides. N. floridana was the only natural enemy found associated with T. evansi in the four crop cycles under protected environment but only in the last crop cycle in the field. In the treatments where the fungus appeared, reduction of mite populations was drastic. N. floridana appeared in tomato plants even when the population density of T. evansi was relatively low (less than 10 mites/3.14 cm(2) of leaf area) and even at this low population density, the fungus maintained infection rates greater than 50%. The application of pesticides directly affected the fungus by delaying epizootic initiation and contributing to lower infection rates than unsprayed treatments. Rainfalls did not have an apparent impact on mite populations. These results indicate that the pathogenic fungus, N. floridana can play a significant role in the population dynamics of T. evansi, especially under protected environment, and has the potential to control this pest in classical biological control programs. (C) 2009 Elsevier Inc. All rights reserved
    corecore