130 research outputs found

    Conformational disorder analysis of the conditionally disordered protein CP12 from Arabidopsis thaliana in its different redox states

    Get PDF
    CP12 is a redox-dependent conditionally disordered protein universally distributed in oxygenic photosynthetic organisms. It is primarily known as a light-dependent redox switch regulating the reductive step of the metabolic phase of photosynthesis. In the present study, a small angle X-ray scattering (SAXS) analysis of recombinant Arabidopsis CP12 (AtCP12) in a reduced and oxidized form confirmed the highly disordered nature of this regulatory protein. However, it clearly pointed out a decrease in the average size and a lower level of conformational disorder upon oxidation. We compared the experimental data with the theoretical profiles of pools of conformers generated with different assumptions and show that the reduced form is fully disordered, whereas the oxidized form is better described by conformers comprising both the circular motif around the C-terminal disulfide bond detected in previous structural analysis and the N-terminal disulfide bond. Despite the fact that disulfide bridges are usually thought to confer rigidity to protein structures, in the oxidized AtCP12, their presence coexists with a disordered nature. Our results rule out the existence of significant amounts of structured and compact conformations of free AtCP12 in a solution, even in its oxidized form, thereby highlighting the importance of recruiting partner proteins to complete its structured final folding

    p53-sensitive epileptic behavior and inflammation in Ft1 hypomorphic mice

    Get PDF
    Epilepsy is a complex clinical condition characterized by repeated spontaneous seizures. Seizures have been linked to multiple drivers including DNA damage accumulation. Investigation of epilepsy physiopathology in humans imposes ethical and practical limitations, for this reason model systems are mostly preferred. Among animal models, mouse mutants are particularly valuable since they allow conjoint behavioral, organismal, and genetic analyses. Along with this, since aging has been associated with higher frequency of seizures, prematurely aging mice, simulating human progeroid diseases, offer a further useful modeling element as they recapitulate aging over a short time-window. Here we report on a mouse mutant with progeroid traits that displays repeated spontaneous seizures. Mutant mice were produced by reducing the expression of the gene Ft1 (AKTIP in humans). In vitro, AKTIP/Ft1 depletion causes telomere aberrations, DNA damage, and cell senescence. AKTIP/Ft1 interacts with lamins, which control nuclear architecture and DNA function. Premature aging defects of Ft1 mutant mice include skeletal alterations and lipodystrophy. The epileptic behavior of Ft1 mutant animals was age and sex linked. Seizures were observed in 18 mutant mice (23.6% of aged ≥ 21 weeks), at an average frequency of 2.33 events/mouse. Time distribution of seizures indicated non-random enrichment of seizures over the follow-up period, with 75% of seizures happening in consecutive weeks. The analysis of epileptic brains did not reveal overt brain morphological alterations or severe neurodegeneration, however, Ft1 reduction induced expression of the inflammatory markers IL-6 and TGF-β. Importantly, Ft1 mutant mice with concomitant genetic reduction of the guardian of the genome, p53, showed no seizures or inflammatory marker activation, implicating the DNA damage response into these phenotypes. This work adds insights into the connection among DNA damage, brain function, and aging. In addition, it further underscores the importance of model organisms for studying specific phenotypes, along with permitting the analysis of genetic interactions at the organismal level

    Mice with reduced expression of the telomere-associated protein Ft1 develop p53-sensitive progeroid traits

    Get PDF
    Human AKTIP and mouse Ft1 are orthologous ubiquitin E2 variant proteins involved in telomere maintenance and DNA replication. AKTIP also interacts with A- and B-type lamins. These features suggest that Ft1 may be implicated in aging regulatory pathways. Here, we show that cells derived from hypomorph Ft1 mutant (Ft1kof/kof ) mice exhibit telomeric defects and that Ft1kof/kof animals develop progeroid traits, including impaired growth, skeletal and skin defects, abnormal heart tissue, and sterility. We also demonstrate a genetic interaction between Ft1 and p53. The analysis of mice carrying mutations in both Ft1 and p53 (Ft1kof/kof ; p53ko/ko and Ft1kof/kof ; p53+/ko ) showed that reduction in p53 rescues the progeroid traits of Ft1 mutants, suggesting that they are at least in part caused by a p53-dependent DNA damage response. Conversely, Ft1 reduction alters lymphomagenesis in p53 mutant mice. These results identify Ft1 as a new player in the aging process and open the way to the analysis of its interactions with other progeria genes using the mouse model

    Organic Consumers’ Viewpoints Towards New Breeding Techniques In Italy

    Get PDF
    Despite the recent decision of the European Court of Justice to consider plant obtained by New Breeding Techniques (NBTs) as GMOs, there is still an intensive debate in Europe on the use of these new techniques in the organic farming. For this reason, understanding organic consumers’ viewpoint towards NBTs is essential for the future of the sector. Following the Q method approach (Brown, 1980), a pilot study was conducted in Italy with 36 organic consumers. The balanced Q-sample, which accounted 48 statements regarding NBTs, was defined according to a 4 x 2 factorial design with six replications. Results demonstrated the presence of two relevant viewpoints towards the adoption of the NBTs in the organic seed and plant breeding sector

    Selection for background matching drives sympatric speciation in Wall Gecko

    Get PDF
    The Wall Gecko shows heterogeneous colour pattern, which may vary among individuals, depending on the time of day and on the habitat segregation. Nocturnal pale geckos live exclusively on walls. Diurnal dark geckos preferentially live on olive tree trunks, demonstrating an ability to change skin colour that is superior to that of the pale gecko and allows diurnal geckos becoming camouflaged on the diverse substrates occupied during the day. In our study, the nocturnal/pale/wall and diurnal/dark/trunk geckos could be considered the extremes of an ecological cline of morphological variation on which divergent selection may be acting. Combining the effect of balancing selection on nocturnal geckos and disruptive selection between two sympatric populations could lead to speciation. All geckos analysed here belong to the same species, as confirmed by genetic characterization, however diurnal and nocturnal gecko populations seem to be in an early stage of incipient speciation. These two different morphs still combine genes, as revealed by neutral genetic markers, yet they show complete separation according to the analyses of mtDNA coding genes. Experimental results show that diurnal and nocturnal geckos do not swap their niches, likely because the predation pressure causes severe selection for background matching. Genomic analysis of complete mtDNA suggests that nocturnal geckos seem to be under balancing selection perhaps due to the narrow niche in which they live, whereas the daytime population has more opportunity in fitting into the multiple available niches, and they experience positive selection. Here we hypothesize that the ecological segregation that we are witnessing between the nocturnal and diurnal geckos, can lead to a ecological speciation

    Human glioblastoma multiforme: p53 reactivation by a novel MDM2 inhibitor

    Get PDF
    Cancer development and chemo-resistance are often due to impaired functioning of the p53 tumor suppressor through genetic mutation or sequestration by other proteins. In glioblastoma multiforme (GBM), p53 availability is frequently reduced because it binds to the Murine Double Minute-2 (MDM2) oncoprotein, which accumulates at high concentrations in tumor cells. The use of MDM2 inhibitors that interfere with the binding of p53 and MDM2 has become a valid approach to inhibit cell growth in a number of cancers; however little is known about the efficacy of these inhibitors in GBM. We report that a new small-molecule inhibitor of MDM2 with a spirooxoindolepyrrolidine core structure, named ISA27, effectively reactivated p53 function and inhibited human GBM cell growth in vitro by inducing cell cycle arrest and apoptosis. In immunoincompetent BALB/c nude mice bearing a human GBM xenograft, the administration of ISA27 in vivo activated p53, inhibited cell proliferation and induced apoptosis in tumor tissue. Significantly, ISA27 was non-toxic in an in vitro normal human cell model and an in vivo mouse model. ISA27 administration in combination with temozolomide (TMZ) produced a synergistic inhibitory effect on GBM cell viability in vitro, suggesting the possibility of lowering the dose of TMZ used in the treatment of GBM. In conclusion, our data show that ISA27 releases the powerful antitumor capacities of p53 in GBM cells. The use of this MDM2 inhibitor could become a novel therapy for the treatment of GBM patients

    Vaccine hesitancy and knowledge regarding maternal immunization among reproductive age women in central Italy: a cross sectional study

    Get PDF
    BackgroundVaccination in pregnancy offers protection to the mother and the newborn. In Italy, influenza, pertussis, and COVID-19 vaccinations are recommended in pregnancy, but vaccination coverage is still far from the National Immunization Plan goals. We aimed to assess knowledge and attitude on maternal immunization in two groups of Italian women, in pregnancy and in reproductive age (non pregnant).MethodsA cross sectional study on Italian childbearing age women gathering information on their knowledge on maternal immunization and attitudes to receiving influenza and pertussis vaccines in pregnancy was carried out at the University of Rome Tor Vergata, between September 2019 and February 2020. Logistic and multinomial regressions were chosen as statistical tests for our analysis.Results1,031 women participated in the survey by answering the questionnaire. Out of these, 553 (53.6%) women were pregnant, and 478 (46.4%) were in the reproductive age. 37% (204/553) of pregnant women and 41% (198/476) of non pregnant women are aware of the existence of an immunization plan for pregnant women in Italy. The group with age between 20 and 30, for both pregnant women and women in the reproductive age, has a better knowledge of vaccination in pregnancy. Working status is a variable associated with more awareness about vaccination during pregnancy only for pregnant women (OR = 2.34, p < 0.00001). Educational status, trimester of pregnancy and knowledge on the topic are associated with vaccine hesitancy in our multivariate analysis for pregnant women. In the reproductive age group women who had a previous pregnancy are more likely to be hesitant towards vaccination in pregnancy, on the other hand the one with a higher knowledge and educational status are more likely to get vaccinated.ConclusionsThe study highlights the persistent vaccine hesitancy among Italian women of reproductive age and pregnant women. Despite healthcare providers being identified as a reliable source of information, their recommendations alone are insufficient to overcome vaccine hesitancy. Factors such as employment status, educational level, pregnancy trimester, and knowledge about vaccinations during pregnancy influence vaccine hesitancy. Tailored educational interventions and communication campaigns targeting these areas can help reduce vaccine hesitancy and promote maternal immunization

    Consolidative thoracic radiation therapy for extensive-stage small cell lung cancer in the era of first-line chemoimmunotherapy: preclinical data and a retrospective study in Southern Italy

    Get PDF
    BackgroundConsolidative thoracic radiotherapy (TRT) has been commonly used in the management of extensive-stage small cell lung cancer (ES-SCLC). Nevertheless, phase III trials exploring first-line chemoimmunotherapy have excluded this treatment approach. However, there is a strong biological rationale to support the use of radiotherapy (RT) as a boost to sustain anti-tumor immune responses. Currently, the benefit of TRT after chemoimmunotherapy remains unclear. The present report describes the real-world experiences of 120 patients with ES-SCLC treated with different chemoimmunotherapy combinations. Preclinical data supporting the hypothesis of anti-tumor immune responses induced by RT are also presented.MethodsA total of 120 ES-SCLC patients treated with chemoimmunotherapy since 2019 in the South of Italy were retrospectively analyzed. None of the patients included in the analysis experienced disease progression after undergoing first-line chemoimmunotherapy. Of these, 59 patients underwent TRT after a multidisciplinary decision by the treatment team. Patient characteristics, chemoimmunotherapy schedule, and timing of TRT onset were assessed. Safety served as the primary endpoint, while efficacy measured in terms of overall survival (OS) and progression-free survival (PFS) was used as the secondary endpoint. Immune pathway activation induced by RT in SCLC cells was explored to investigate the biological rationale for combining RT and immunotherapy.ResultsPreclinical data supported the activation of innate immune pathways, including the STimulator of INterferon pathway (STING), gamma-interferon-inducible protein (IFI-16), and mitochondrial antiviral-signaling protein (MAVS) related to DNA and RNA release. Clinical data showed that TRT was associated with a good safety profile. Of the 59 patients treated with TRT, only 10% experienced radiation toxicity, while no ≥ G3 radiation-induced adverse events occurred. The median time for TRT onset after cycles of chemoimmunotherapy was 62 days. Total radiation dose and fraction dose of TRT include from 30 Gy in 10 fractions, up to definitive dose in selected patients. Consolidative TRT was associated with a significantly longer PFS than systemic therapy alone (one-year PFS of 61% vs. 31%, p<0.001), with a trend toward improved OS (one-year OS of 80% vs. 61%, p=0.027).ConclusionMulti-center data from establishments in the South of Italy provide a general confidence in using TRT as a consolidative strategy after chemoimmunotherapy. Considering the limits of a restrospective analysis, these preliminary results support the feasibility of the approach and encourage a prospective evaluation

    Understanding Factors Associated With Psychomotor Subtypes of Delirium in Older Inpatients With Dementia

    Get PDF
    • …
    corecore