3,390 research outputs found

    Accuracy of computerized tomography in determining hepatic tumor size in patients receiving liver transplantation or resection

    Get PDF
    Computerized tomography (CT) of liver is used in oncologic practice for staging tumors, evaluating response to treatment, and screening patients for hepatic resection. Because of the impact of CT liver scan on major treatment decisions, it is important to assess its accuracy. Patients undergoing liver transplantation or resection provide a unique opportunity to test the accuracy of hepatic-imaging techniques by comparison of finding of preoperative CT scan with those at gross pathologic examination of resected specimens. Forty-one patients who had partial hepatic resection (34 patients) or liver transplantation (eight patients) for malignant (30 patients) or benign (11 patients) tumors were evaluable. Eight (47%) of 17 patients with primary malignant liver tumors, four (31%) of 13 patients with metastatic liver tumors, and two (20%) of 10 patients with benign liver tumors had tumor nodules in resected specimens that were not apparent on preoperative CT studies. These nodules varied in size from 0.1 to 1.6 cm. While 11 of 14 of these nodules were 1.0 cm. These results suggest that conventional CT alone may be insufficient to accurately determine the presence or absence of liver metastases, extent of liver involvement, or response of hepatic metastases to treatment

    Structural and electronic properties of the metal-metal intramolecular junctions of single-walled carbon nanotubes

    Full text link
    Several intramolecular junctions (IMJs) connecting two metallic (11, 8) and (9, 6) carbon nanotubes along their common axis have been realized by using a layer-divided technique to the nanotubes and introducing the topological defects. Atomic structure of each IMJ configuration is optimized with a combination of density-functional theory (DFT) and the universal force field (UFF) method, based upon which a four-orbital tight-binding calculation is made on its electronic properties. Different topological defect structures and their distributions on the IMJ interfaces have been found, showing decisive effects on the localized density of states, while the sigma-pi coupling effect is negligible near Fermi energy (EF). Finally, a new IMJ model has been proposed, which probably reflects a real atomic structure of the M-M IMJ observed in the experiment [Science 291, 97 (2001)].Comment: 11 pages and 3 figure

    Through-membrane electron-beam lithography for ultrathin membrane applications

    Full text link
    We present a technique to fabricate ultrathin (down to 20 nm) uniform electron transparent windows at dedicated locations in a SiN membrane for in situ transmission electron microscopy experiments. An electron-beam (e-beam) resist is spray-coated on the backside of the membrane in a KOH- etched cavity in silicon which is patterned using through-membrane electron-beam lithography. This is a controlled way to make transparent windows in membranes, whilst the topside of the membrane remains undamaged and retains its flatness. Our approach was optimized for MEMS-based heating chips but can be applied to any chip design. We show two different applications of this technique for (1) fabrication of a nanogap electrode by means of electromigration in thin free-standing metal films and (2) making low-noise graphene nanopore devices

    Negative differential resistance in nanotube devices

    Full text link
    Carbon nanotube junctions are predicted to exhibit negative differential resistance, with very high peak-to-valley current ratios even at room temperature. We treat both nanotube p-n junctions and undoped metal-nanotube-metal junctions, calculating quantum transport through the self-consistent potential within a tight-binding approximation. The undoped junctions in particular may be suitable for device integration.Comment: 4 pages, 4 figures, to appear in Physical Review Letter

    Completely Positive Quantum Dissipation

    Get PDF
    A completely positive master equation describing quantum dissipation for a Brownian particle is derived starting from microphysical collisions, exploiting a recently introduced approach to subdynamics of a macrosystem. The obtained equation can be cast into Lindblad form with a single generator for each Cartesian direction. Temperature dependent friction and diffusion coefficients for both position and momentum are expressed in terms of the collision cross-section.Comment: 8 pages, revtex, no figure

    Interference effects in electronic transport through metallic single-wall carbon nanotubes

    Full text link
    In a recent paper Liang {\it et al.} [Nature {\bf 411}, 665 (2001)] showed experimentally, that metallic nanotubes, strongly coupled to external electrodes, may act as coherent molecular waveguides for electronic transport. The experimental results were supported by theoretical analysis based on the scattering matrix approach. In this paper we analyze theoretically this problem using a real-space approach, which makes it possible to control quality of interface contacts. Electronic structure of the nanotube is taken into account within the tight-binding model. External electrodes and the central part (sample) are assumed to be made of carbon nanotubes, while the contacts between electrodes and the sample are modeled by appropriate on-site (diagonal) and hopping (off-diagonal) parameters. Conductance is calculated by the Green function technique combined with the Landauer formalism. In the plots displaying conductance {\it vs.} bias and gate voltages, we have found typical diamond structure patterns, similar to those observed experimentally. In certain cases, however, we have found new features in the patterns, like a double-diamond sub-structure.Comment: 15 pages, 4 figures. To apear in Phys. Rev.

    Mean-field calculations of quasi-elastic responses in 4He

    Full text link
    We present calculations of the quasi-elastic responses functions in 4He based upon a mean-field model used to perform analogous calculations in heavier nuclei. The meson exchange current contribution is small if compared with the results of calculations where short-range correlations are explicitly considered. It is argued that the presence of these correlations in the description of the nuclear wave functions is crucial to make meson exchange current effects appreciable.Comment: uuencoded file containing 7 LaTex peges plus 3 ps figures. To be published in Physical Review

    Multiple Functionality in Nanotube Transistors

    Full text link
    Calculations of quantum transport in a carbon nanotube transistor show that such a device offers unique functionality. It can operate as a ballistic field-effect transistor, with excellent characteristics even when scaled to 10 nm dimensions. At larger gate voltages, channel inversion leads to resonant tunneling through an electrostatically defined nanoscale quantum dot. Thus the transistor becomes a gated resonant tunelling device, with negative differential resistance at a tunable threshold. For the dimensions considered here, the device operates in the Coulomb blockade regime, even at room temperature.Comment: To appear in Phys. Rev. Let

    Numerical Study of Order in a Gauge Glass Model

    Full text link
    The XY model with quenched random phase shifts is studied by a T=0 finite size defect energy scaling method in 2d and 3d. The defect energy is defined by a change in the boundary conditions from those compatible with the true ground state configuration for a given realization of disorder. A numerical technique, which is exact in principle, is used to evaluate this energy and to estimate the stiffness exponent θ\theta. This method gives θ=0.36±0.013\theta = -0.36\pm0.013 in 2d and θ=+0.31±0.015\theta = +0.31\pm 0.015 in 3d, which are considerably larger than previous estimates, strongly suggesting that the lower critical dimension is less than three. Some arguments in favor of these new estimates are given.Comment: 4 pages, 2 figures, revtex. Submitted to Phys. Rev. Let
    corecore