15,935 research outputs found

    Optimized complex power quality classifier using one vs. rest support vector machine

    Get PDF
    Nowadays, power quality issues are becoming a significant research topic because of the increasing inclusion of very sensitive devices and considerable renewable energy sources. In general, most of the previous power quality classification techniques focused on single power quality events and did not include an optimal feature selection process. This paper presents a classification system that employs Wavelet Transform and the RMS profile to extract the main features of the measured waveforms containing either single or complex disturbances. A data mining process is designed to select the optimal set of features that better describes each disturbance present in the waveform. Support Vector Machine binary classifiers organized in a ?One Vs Rest? architecture are individually optimized to classify single and complex disturbances. The parameters that rule the performance of each binary classifier are also individually adjusted using a grid search algorithm that helps them achieve optimal performance. This specialized process significantly improves the total classification accuracy. Several single and complex disturbances were simulated in order to train and test the algorithm. The results show that the classifier is capable of identifying >99% of single disturbances and >97% of complex disturbances.Fil: de Yong, David Marcelo. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Electricidad y Electrónica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Bhowmik, Sudipto. Nexant Inc; Estados UnidosFil: Magnago, Fernando. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Electricidad y Electrónica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentin

    The Λ2\Lambda_2 limit of massive gravity

    Full text link
    Lorentz-invariant massive gravity is usually associated with a strong coupling scale Λ3\Lambda_3. By including non-trivial effects from the Stueckelberg modes, we show that about these vacua, one can push the strong coupling scale to higher values and evade the linear vDVZ-discontinuity. For generic parameters of the theory and generic vacua for the Stueckelberg fields, the Λ2\Lambda_2-decoupling limit of the theory is well-behaved and free of any ghost or gradient-like instabilities. We also discuss the implications for nonlinear sigma models with Lorentzian target spaces.Comment: 38 pages, 1 figure, JHEP version, minor change
    • …
    corecore