24,176 research outputs found

    Quasi-Polish Spaces

    Get PDF
    We investigate some basic descriptive set theory for countably based completely quasi-metrizable topological spaces, which we refer to as quasi-Polish spaces. These spaces naturally generalize much of the classical descriptive set theory of Polish spaces to the non-Hausdorff setting. We show that a subspace of a quasi-Polish space is quasi-Polish if and only if it is level \Pi_2 in the Borel hierarchy. Quasi-Polish spaces can be characterized within the framework of Type-2 Theory of Effectivity as precisely the countably based spaces that have an admissible representation with a Polish domain. They can also be characterized domain theoretically as precisely the spaces that are homeomorphic to the subspace of all non-compact elements of an \omega-continuous domain. Every countably based locally compact sober space is quasi-Polish, hence every \omega-continuous domain is quasi-Polish. A metrizable space is quasi-Polish if and only if it is Polish. We show that the Borel hierarchy on an uncountable quasi-Polish space does not collapse, and that the Hausdorff-Kuratowski theorem generalizes to all quasi-Polish spaces

    Levels of discontinuity, limit-computability, and jump operators

    Full text link
    We develop a general theory of jump operators, which is intended to provide an abstraction of the notion of "limit-computability" on represented spaces. Jump operators also provide a framework with a strong categorical flavor for investigating degrees of discontinuity of functions and hierarchies of sets on represented spaces. We will provide a thorough investigation within this framework of a hierarchy of Ξ”20\Delta^0_2-measurable functions between arbitrary countably based T0T_0-spaces, which captures the notion of computing with ordinal mind-change bounds. Our abstract approach not only raises new questions but also sheds new light on previous results. For example, we introduce a notion of "higher order" descriptive set theoretical objects, we generalize a recent characterization of the computability theoretic notion of "lowness" in terms of adjoint functors, and we show that our framework encompasses ordinal quantifications of the non-constructiveness of Hilbert's finite basis theorem

    A generalization of a theorem of Hurewicz for quasi-Polish spaces

    Full text link
    We identify four countable topological spaces S2S_2, S1S_1, SDS_D, and S0S_0 which serve as canonical examples of topological spaces which fail to be quasi-Polish. These four spaces respectively correspond to the T2T_2, T1T_1, TDT_D, and T0T_0-separation axioms. S2S_2 is the space of rationals, S1S_1 is the natural numbers with the cofinite topology, SDS_D is an infinite chain without a top element, and S0S_0 is the set of finite sequences of natural numbers with the lower topology induced by the prefix ordering. Our main result is a generalization of Hurewicz's theorem showing that a co-analytic subset of a quasi-Polish space is either quasi-Polish or else contains a countable Ξ 20\Pi^0_2-subset homeomorphic to one of these four spaces

    Special curves and postcritically-finite polynomials

    Full text link
    We study the postcritically-finite (PCF) maps in the moduli space of complex polynomials MPd\mathrm{MP}_d. For a certain class of rational curves CC in MPd\mathrm{MP}_d, we characterize the condition that CC contains infinitely many PCF maps. In particular, we show that if CC is parameterized by polynomials, then there are infinitely many PCF maps in CC if and only if there is exactly one active critical point along CC, up to symmetries; we provide the critical orbit relation satisfied by any pair of active critical points. For the curves Per1(Ξ»)\mathrm{Per}_1(\lambda) in the space of cubic polynomials, introduced by Milnor (1992), we show that Per1(Ξ»)\mathrm{Per}_1(\lambda) contains infinitely many PCF maps if and only if Ξ»=0\lambda=0. The proofs involve a combination of number-theoretic methods (specifically, arithmetic equidistribution) and complex-analytic techniques (specifically, univalent function theory). We provide a conjecture about Zariski density of PCF maps in subvarieties of the space of rational maps, in analogy with the Andr\'e-Oort Conjecture from arithmetic geometry.Comment: Final version, appeared in Forum of Math. P
    • …
    corecore