155 research outputs found

    Floating bonds and gap states in a-Si and a-Si:H from first principles calculations

    Full text link
    We study in detail by means of ab-initio pseudopotential calculations the electronic structure of five-fold coordinated (T_5) defects in a-Si and a-Si:H, also during their formation and their evolution upon hydrogenation. The atom-projected densities of states (DOS) and an accurate analysis of the valence charge distribution clearly indicate the fundamental contribution of T_5 defects in originating gap states through their nearest neighbors. The interaction with hydrogen can reduce the DOS in the gap annihilating T_5 defects.Comment: To appear in Europhysics Let

    Coordination defects in a-Si and a-Si:H : a characterization from first principles calculations

    Full text link
    We study by means of first-principles pseudopotential method the coordination defects in a-Si and a-Si:H, also in their formation and their evolution upon hydrogen interaction. An accurate analysis of the valence charge distribution and of the ``electron localization function'' (ELF) allows to resolve possible ambiguities in the bonding configuration, and in particular to identify clearly three-fold (T_3) and five-fold (T_5) coordinated defects. We found that electronic states in the gap can be associated to both kind of defects, and that in both cases the interaction with hydrogen can reduce the density of states in the gap.Comment: To appear in Philos. Ma

    Van der Waals Coefficients of Atoms and Molecules from a Simple Approximation for the Polarizability

    Full text link
    A simple and computationally efficient scheme to calculate approximate imaginary-frequency dependent polarizability, hence asymptotic van der Waals coefficient, within density functional theory is proposed. The dynamical dipolar polarizabilities of atoms and molecules are calculated starting from the Thomas-Fermi-von Weizs\"acker (TFvW) approximation for the independent-electron kinetic energy functional. The van der Waals coefficients for a number of closed-shell ions and a few molecules are hence calculated and compared with available values obtained by fully first-principles calculations. The success in these test cases shows the potential of the proposed TFvW approximate response function in capturing the essence of long range correlations and may give useful information for constructing a functional which naturally includes van der Waals interactions.Comment: 6 pages, 4 figures. To appear in Phys. Rev.

    Effects of disorder on the optical gap of (Zn,Mg)(S,Se)

    Get PDF
    The electronic properties and optical gap of (Zn,Mg)(S,Se) wide-gap solid solutions are studied using ab initio techniques and starting from the previously determined atomistic structure of the alloy. Compositional disorder is shown to close the gap substantially with respect to the predictions of the virtual-crystal approximation. The bowing of the fundamental gap versus composition predicted by our calculations is in very good agreement with experiments available for the Zn(S,Se) pseudobinary alloy. At temperatures typical of molecular-beam epitaxy growth, the quaternary alloy displays a rather large amount of short-range order whose effect is to slightly but unmistakably open the gap. Our results agree well with recent experimental data for the quaternary alloy. (C) 1999 American Institute of Physics. [S0003-6951(99)02044-6]

    Disproportionation Phenomena on Free and Strained Sn/Ge(111) and Sn/Si(111) Surfaces

    Full text link
    Distortions of the 3Ă—3\sqrt3\times\sqrt3 Sn/Ge(111) and Sn/Si(111) surfaces are shown to reflect a disproportionation of an integer pseudocharge, QQ, related to the surface band occupancy. A novel understanding of the (3Ă—3)(3\times3)-1U (``1 up, 2 down'') and 2U (``2 up, 1 down'') distortions of Sn/Ge(111) is obtained by a theoretical study of the phase diagram under strain. Positive strain keeps the unstrained value Q=3 but removes distorsions. Negative strain attracts pseudocharge from the valence band causing first a (3Ă—3)(3\times3)-2U distortion (Q=4) on both Sn/Ge and Sn/Si, and eventually a (3Ă—3)(\sqrt3\times\sqrt3)-3U (``all up'') state with Q=6. The possibility of a fluctuating phase in unstrained Sn/Si(111) is discussed.Comment: Revtex, 5 pages, 3 figure

    Semiconductor effective charges from tight-binding theory

    Full text link
    We calculate the transverse effective charges of zincblende compound semiconductors using Harrison's tight-binding model to describe the electronic structure. Our results, which are essentially exact within the model, are found to be in much better agreement with experiment than previous perturbation-theory estimates. Efforts to improve the results by using more sophisticated variants of the tight-binding model were actually less successful. The results underline the importance of including quantities that are sensitive to the electronic wavefunctions, such as the effective charges, in the fitting of tight-binding models.Comment: 4 pages, two-column style with 2 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#jb_t

    First-principles characterization of Mg low-index surfaces: Structure, reconstructions, and surface core-level shifts

    Get PDF
    In this paper, first-principles calculations provide structural characterization of three low-index Mg surfaces - Mg(0001), Mg(1010), and Mg(1120) - and their respective surface core-level shifts (SCLSs). Inspired by the close similarities between Be and Mg surfaces, we also explore the reconstruction of Mg(1120). Through the calculation of surface energies and the use of the angular-component decomposed density of states, we show that reconstructions are likely to occur at the Mg(1120) surface, similarly to what was found earlier for Be(1120). Indeed, the surface energy of some of the explored reconstructions is slightly lower than that of the unreconstructed surface. In addition, because of lattice symmetry, the morphology of the unreconstructed surface (1120) results in a steplike zig-zag chain packing, with topmost chains supporting a resonant, quasi-one-dimensional (1D), partially filled electronic state. As the presence of partially filled quasi-1D bands is a necessary condition for Peierls-like dimerization, we verify that the undimerized surface chain remains stable with respect to it. Some of the reconstructions, namely, the 2 71 and 3 71 added row reconstructions, induce a stronger relaxation of the topmost chains, increasing the coupling with lower layers and thus significantly damping the quasi-1D character of this state. The original approach followed offers a common and general framework to identify quasi-1D bands - even in the case of resonant electronic surface states - and to meaningfully compare calculated and measured SCLSs even in the presence of multicomponent peak contributions

    Electron-phonon interaction at the Be(0001) surface

    Full text link
    We present a first principle study of the electron-phonon (e-p) interaction at the Be(0001) surface. The real and imaginary part of the e-p self energy are calculated for the surface state in the binding energy range from the Γˉ\bar{\Gamma} point to the Fermi level. Our calculation shows an overall good agreement with several photoemission data measured at high and low temperatures. Additionally, we show that the energy derivative of real part of the self-energy presents a strong temperature and energy variation close to EFE_{F}, making it difficult to measure its value just at EFE_{F}.Comment: Accepted in Phys. Rev. Lett., 5 figure

    {\it Ab initio} 27Al^{27}Al NMR chemical shifts and quadrupolar parameters for Al2O3Al_2O_3 phases and their precursors

    Full text link
    The Gauge-Including Projector Augmented Wave (GIPAW) method, within the Density Functional Theory (DFT) Generalized Gradient Approximation (GGA) framework, is applied to compute solid state NMR parameters for 27Al^{27}Al in the α\alpha, θ\theta, and κ\kappa aluminium oxide phases and their gibbsite and boehmite precursors. The results for well-established crystalline phases compare very well with available experimental data and provide confidence in the accuracy of the method. For γ\gamma-alumina, four structural models proposed in the literature are discussed in terms of their ability to reproduce the experimental spectra also reported in the literature. Among the considered models, the Fd3ˉmFd\bar{3}m structure proposed by Paglia {\it et al.} [Phys. Rev. B {\bf 71}, 224115 (2005)] shows the best agreement. We attempt to link the theoretical NMR parameters to the local geometry. Chemical shifts depend on coordination number but no further correlation is found with geometrical parameters. Instead our calculations reveal that, within a given coordination number, a linear correlation exists between chemical shifts and Born effective charges
    • …
    corecore