23 research outputs found

    Identification and Evolution of Drug Efflux Pump in Clinical Enterobacter aerogenes Strains Isolated in 1995 and 2003

    Get PDF
    BACKGROUND: The high mortality impact of infectious diseases will increase due to accelerated evolution of antibiotic resistance in important human pathogens. Development of antibiotic resistance is a evolutionary process inducing the erosion of the effectiveness of our arsenal of antibiotics. Resistance is not necessarily limited to a single class of antibacterial agents but may affect many unrelated compounds; this is termed 'multidrug resistance' (MDR). The major mechanism of MDR is the active expulsion of drugs by bacterial pumps; the treatment of gram negative bacterial infections is compromised due to resistance mechanisms including the expression of efflux pumps that actively expel various usual antibiotics (beta-lactams, quinolones, ...). METHODOLOGY/PRINCIPAL FINDINGS: Enterobacter aerogenes has emerged among Enterobacteriaceae associated hospital infections during the last twenty years due to its faculty of adaptation to antibiotic stresses. Clinical isolates of E. aerogenes belonging to two strain collections isolated in 1995 and 2003 respectively, were screened to assess the involvement of efflux pumps in antibiotic resistance. Drug susceptibility assays were performed on all bacterial isolates and an efflux pump inhibitor (PAbetaN) previously characterized allowed to decipher the role of efflux in the resistance. Accumulation of labelled chloramphenicol was monitored in the presence of an energy poison to determine the involvement of active efflux on the antibiotic intracellular concentrations. The presence of the PAbetaN-susceptible efflux system was also identified in resistant E. aerogenes strains. CONCLUSIONS/SIGNIFICANCE: For the first time a noticeable increase in clinical isolates containing an efflux mechanism susceptible to pump inhibitor is report within an 8 year period. After the emergence of extended spectrum beta-lactamases in E. aerogenes and the recent characterisation of porin mutations in clinical isolates, this study describing an increase in inhibitor-susceptible efflux throws light on a new step in the evolution of mechanism in E. aerogenes

    Phylogeny in Aid of the Present and Novel Microbial Lineages: Diversity in Bacillus

    Get PDF
    Bacillus represents microbes of high economic, medical and biodefense importance. Bacillus strain identification based on 16S rRNA sequence analyses is invariably limited to species level. Secondly, certain discrepancies exist in the segregation of Bacillus subtilis strains. In the RDP/NCBI databases, out of a total of 2611 individual 16S rDNA sequences belonging to the 175 different species of the genus Bacillus, only 1586 have been identified up to species level. 16S rRNA sequences of Bacillus anthracis (153 strains), B. cereus (211 strains), B. thuringiensis (108 strains), B. subtilis (271 strains), B. licheniformis (131 strains), B. pumilus (83 strains), B. megaterium (47 strains), B. sphaericus (42 strains), B. clausii (39 strains) and B. halodurans (36 strains) were considered for generating species-specific framework and probes as tools for their rapid identification. Phylogenetic segregation of 1121, 16S rDNA sequences of 10 different Bacillus species in to 89 clusters enabled us to develop a phylogenetic frame work of 34 representative sequences. Using this phylogenetic framework, 305 out of 1025, 16S rDNA sequences presently classified as Bacillus sp. could be identified up to species level. This identification was supported by 20 to 30 nucleotides long signature sequences and in silico restriction enzyme analysis specific to the 10 Bacillus species. This integrated approach resulted in identifying around 30% of Bacillus sp. up to species level and revealed that B. subtilis strains can be segregated into two phylogenetically distinct groups, such that one of them may be renamed

    Evaluation of Oxoid combination discs for detection ofextended-spectrum  -lactamases

    No full text

    USEFULNESS OF BACTERIOLOGICAL SURVEILLANCE CULTURES FOR MONITORING INFECTION IN HOSPITALIZED PATIENTS: A CRITICAL REAPPRAISAL

    No full text
    Untargeted bacteriological surveillance of superficial and deep body sites is frequently performed routinely in various clinical settings. This practice is based on the assumption that early identification of surface microbial flora might be predictive of organisms that will later cause invasive disease and that it may consequently assist in guiding empirical antibiotic therapy. A comprehensive review of the literature however indicates that the clinical value and cost-effectiveness of such practices still remain debated and appear largely unproven in most conditions and situations where they are routinely advocated. The present article reviews and critically discusses the available body of evidence supporting or disproving the use of bacteriological surveillance cultures. It is also aimed to issue general recommendations, strategies and methodologies that could be applied in different hospital care settings including the neonatal or adult intensive care as well as the hematology-oncology units

    Clinical Impact of a PCR Assay for Identification of Staphylococcus aureus and Determination of Methicillin Resistance Directly from Blood Cultures

    No full text
    We evaluated the clinical usefulness of a PCR assay that discriminates Staphylococcus aureus from coagulase-negative staphylococci and detects methicillin resistance on blood cultures by measuring the adaptation of antimicrobial therapy based on the PCR results. Only 7 of 28 patients (25%) benefited from a modification of antibiotic therapy based on the PCR results, since empirical therapy was appropriate in a majority of cases
    corecore