148 research outputs found

    Modulation of microRNome by Human Cytomegalovirus and Human Herpesvirus 6 Infection in Human Dermal Fibroblasts: Possible Significance in the Induction of Fibrosis in Systemic Sclerosis

    Get PDF
    Human cytomegalovirus (HCMV) and Human herpesvirus 6 (HHV-6) have been reportedly suggested as triggers of the onset and/or progression of systemic sclerosis (SSc), a severe autoimmune disorder characterized by multi-organ fibrosis. The etiology and pathogenesis of SSc are still largely unknown but virological and immunological observations support a role for these beta-herpesviruses, and we recently observed a direct impact of HCMV and HHV-6 infection on the expression of cell factors associated with fibrosis at the cell level. Since miRNA expression has been found profoundly deregulated at the tissue level, here we aimed to investigate the impact on cell microRNome (miRNome) of HCMV and HHV-6 infection in in vitro infected primary human dermal fibroblasts, which represent one of the main SSc target cells. The analysis, performed by Taqman arrays detecting and quantifying 754 microRNAs (miRNAs), showed that both herpesviruses significantly modulated miRNA expression in infected cells, with evident early and late effects and deep modulation (>10 fold) of >40 miRNAs at each time post infection, including those previously recognized for their key function in fibrosis. The correlation between these in vitro results with in vivo observations is strongly suggestive of a role of HCMV and/or HHV-6 in the multistep pathogenesis of fibrosis in SSc and in the induction of fibrosis-signaling pathways finally leading to tissue fibrosis. The identification of specific miRNAs may open the way to their use as biomarkers for SSc diagnosis, assessment of disease progression and possible antifibrotic therapies

    Characterization of Clostridioides difficile Strains from an Outbreak Using MALDI-TOF Mass Spectrometry

    Get PDF
    The epidemiology of Clostridioides difficile infection (CDI) has changed over the last two decades, due to the emergence of C. difficile strains with clinical relevance and responsible for nosocomial outbreaks with severe outcomes. This study reports an outbreak occurred in a Long-term Care Unit from February to March 2022 and tracked by using a Matrix-Assisted Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) typing approach (T-MALDI); subsequently, a characterization of the toxigenic and antimicrobial susceptibility profiles of the C. difficile isolates was performed. A total of 143 faecal samples belonging to 112 patients was evaluated and C. difficile DNA was detected in 51 samples (46 patients). Twenty-nine C. difficile isolates were obtained, and three different clusters were revealed by T-MALDI. The most representative cluster accounted 22 strains and was considered to be epidemic, in agreement with PCR-Ribotyping. Such epidemic strains were susceptible to vancomycin (MIC <= 0.5 mg/mL) and metronidazole (MIC <= 1 mg/mL), but not to moxifloxacin (MIC > 32 mg/mL). Moreover, they produced only the Toxin A and, additionally, the binary toxin. To our knowledge, this is the first reported outbreak referable to a tcdA+/tcdB-/cdt+ genotypic profile. In light of these results, T-MALDI is a valid and rapid approach for discovering and tracking outbreaks

    Active surveillance for carbapenemaseproducing Klebsiella pneumoniae and correlation with infection in subjects attending an Italian tertiary-care hospital: a 7-year retrospective study

    Get PDF
    Objectives The distribution of carbapenemase-producing Klebsiella pneumoniae (CPKP) phenotypes and genotypes in samples collected during 2011–2018 was evaluated. The association between patients with CPKP-positive rectal swab and those with CPKP infection, as well as the overall analysis of CPKP-infected patients, was performed. Setting The study was performed in a tertiary-care hospital located in Northern Italy. Participants Two groups were considered: 22 939 ‘atrisk’ patients submitted to active surveillance for CPKP detection in rectal swabs/stools and 1094 CPKP-infected patients in which CPKP was detected in samples other than rectal swabs. Results CPKP-positive rectal swabs were detected in 5% (1150/22 939). A CPKP infection was revealed in 3.1% (719/22 939) of patients: 582 with CPKP-positive rectal swab (50.6% of the 1150 CPKP-positive rectal swabs) and 137 with CPKP-negative rectal swab. The 49.4% (568/1150) of the patients with CPKP-positive rectal swab were carriers. The overall frequency of CPKP-positive patients (carriers and infected) was almost constant from 2012 to 2016 (excluding the 2015 peak) and then increased in 2017–2018. blaKPC was predominant followed by blaVIM. No difference was observed in the frequency of CPKP-positive rectal swab patients among the different material groups. Among the targeted carbapenemase genes, blaVIM was more significantly detected from urine than from other samples. Conclusions The high prevalence of carriers without evidence of infection, representing a potential reservoir of CPKP, suggests to maintain the guard about this problem, emphasising the importance of active surveillance for timely detection and separation of carriers, activation of contact precautions and antibiotic treatment guidance on suspicion of infection

    Leptospira species and serovars identified by MALDI-TOF mass spectrometry after database implementation

    Full text link
    Background: Leptospirosis, a spirochaetal zoonotic disease of worldwide distribution, endemic in Europe, has been recognized as an important emerging infectious disease, though yet it is mostly a neglected disease which imparts its greatest burden on impoverished populations from developing countries. Leptospirosis is caused by the infection with any of the more than 230 serovars of pathogenic Leptospira sp. In this study we aimed to implement the MALDI-TOF mass spectrometry (MS) database currently available in our laboratory with Leptospira reference pathogenic (L. interrogans, L. borgpetersenii, L. kirschneri, L. noguchii), intermediate (L. fainei) and saprophytic (L. biflexa) strains of our collection in order to evaluate its possible application to the diagnosis of leptospirosis and to the typing of strains. This was done with the goal of understanding whether this methodology could be used as a tool for the identification of Leptospira strains, not only at species level for diagnostic purposes, but also at serovar level for epidemiological purposes, overcoming the limits of serological and molecular conventional methods. Twenty Leptospira reference strains were analysed by MALDI-TOF MS. Statistical analysis of the protein spectra was performed by ClinProTools software. Results: The spectra obtained by the analysis of the reference strains tested were grouped into 6 main classes corresponding to the species analysed, highlighting species-specific protein profiles. Moreover, the statistical analysis of the spectra identified discriminatory peaks to recognize Leptospira strains also at serovar level extending previously published data. Conclusions: In conclusion, we confirmed that MALDI-TOF MS could be a powerful tool for research and diagnostic in the field of leptospirosis with broad applications ranging from the detection and identification of pathogenic leptospires for diagnostic purposes to the typing of pathogenic and non-pathogenic leptospires for epidemiological purposes in order to enrich our knowledge about the epidemiology of the infection in different areas and generate control strategies

    STUDIO DELLE INTERAZIONI TRA VIRUS INFLUENZA E CELLULA OSPITE IN CORSO DI INFEZIONE SPERIMENTALE CON LO STIPITE UMANO A/WSN/33: POSSIBILE RUOLO DEL SISTEMA CITOSCHELETRICO DEI MICROFILAMENTI NELLA DETERMINAZIONE DI UNA CONDIZIONE DI RESISTENZA CELLULARE ALL’INFEZIONE VIRALE

    No full text
    Il modello sperimentale prescelto nel quadro di questa tesi è costituito dal ceppo ATCC dello stipite umano di virus influenza A/WSN/33 lo studio del cui ciclo replicativo è stato effettuato in due diverse linee cellulari di mammifero, rappresentate da cellule simil-epiteliali di rene di scimmia (LLC-MK2) e cellule simil-epiteliali di rene di cane (MDCK). I risultati ottenuti hanno evidenziato che, in condizioni di infezione sperimentale a bassa molteplicità, il modello LLC-MK2 costituisce per il virus WSN un sistema cellulare di tipo semi-permissivo, mentre le cellule MDCK consentono l’espletamento di un’infezione virale produttiva. Nell’ambito delle strutture cellulari che potrebbero intervenire nell’instaurare un così diversificato comportamento delle due linee cellulari nei confronti dell’infezione con lo stipite WSN/33, l’attenzione è stata principalmente rivolta alla possibile implicazione del citoscheletro, in particolar modo del sistema dei microfilamenti di actina. I dati ottenuti mediante studio in microscopia confocale hanno consentito di evidenziare differenze rilevanti nell’organizzazione del sistema dei microfilamenti nelle due suddette linee cellulari, che si ripercuotono, verosimilmente, sulle diverse interazioni con lo stipite virale utilizzato. Il forte grado di colocalizzazione esistente tra nucleoproteina virale (e/o altre componenti del virus) ed actina a diversi tempi dall’inizio dell’infezione sperimentale in cellule LLC-MK2 (e la pressoché totale assenza in cellule MDCK) può essere considerato quale indice di un’importante interazione di natura molecolare tra le due proteine, in grado di resistere, peraltro, all’espressione di una condizione altamente dinamica, quale il processo di depolimerizzazione dell’actina, indotto dal trattamento con citocalasina D. La modificazione di assetto del sistema citoscheletrico di actina di cellule LLC-MK2 in corso di infezione con virus WSN, porta ad un completo ripristino dell’efficienza di moltiplicazione virale e depone per un contributo dei microfilamenti nell’instaurare una condizione di resistenza virale all’infezione

    Modulation of microRNome by Human Cytomegalovirus and Human Herpesvirus 6 Infection in Human Dermal Fibroblasts: Possible Significance in the Induction of Fibrosis in Systemic Sclerosis

    Get PDF
    Human cytomegalovirus (HCMV) and Human herpesvirus 6 (HHV-6) have been reportedly suggested as triggers of the onset and/or progression of systemic sclerosis (SSc), a severe autoimmune disorder characterized by multi-organ fibrosis. The etiology and pathogenesis of SSc are still largely unknown but virological and immunological observations support a role for these beta-herpesviruses, and we recently observed a direct impact of HCMV and HHV-6 infection on the expression of cell factors associated with fibrosis at the cell level. Since miRNA expression has been found profoundly deregulated at the tissue level, here we aimed to investigate the impact on cell microRNome (miRNome) of HCMV and HHV-6 infection in in vitro infected primary human dermal fibroblasts, which represent one of the main SSc target cells. The analysis, performed by Taqman arrays detecting and quantifying 754 microRNAs (miRNAs), showed that both herpesviruses significantly modulated miRNA expression in infected cells, with evident early and late effects and deep modulation (>10 fold) of >40 miRNAs at each time post infection, including those previously recognized for their key function in fibrosis. The correlation between these in vitro results with in vivo observations is strongly suggestive of a role of HCMV and/or HHV-6 in the multistep pathogenesis of fibrosis in SSc and in the induction of fibrosis-signaling pathways finally leading to tissue fibrosis. The identification of specific miRNAs may open the way to their use as biomarkers for SSc diagnosis, assessment of disease progression and possible antifibrotic therapies

    RNA-dependent nuclear matrix contains a 33 kb globin full domain transcript as well as prosomes but no 26S proteasomes

    No full text
    Previously, we have shown that in murine myoblasts prosomes are constituents of the nuclear matrix; a major part of the latter was found to be RNase sensitive. Here, we further define the RNA-dependent matrix in avian erythroblastosis virus (AEV) transformed erythroid cells in relation to its structure, presence of specific RNA, prosomes and/or proteasomes. These cells transcribe but do not express globin genes prior to induction. Electron micrographs show little difference in matrices treated with DNase alone or with both, DNase and RNase. In situ hybridization with alpha globin riboprobes shows that this matrix includes globin transcripts. Of particular interest is that, apparently, a nearly 35 kb long globin full domain transcript (FDT), including genes, intergenic regions and a large upstream domain is a part of the RNA-dependent nuclear matrix. The 23K-type of prosomes, previously shown to be co-localized with globin transcripts in the nuclear RNA processing centers, were found all over the nuclear matrix. Other types of prosomes show different distributions in the intact cell but similar distribution patterns on the matrix. Globin transcripts and at least 80% of prosomes disappear from matrices upon RNase treatment. Interestingly, the 19S proteasome modulator complex is insensitive to RNase treatment. Only 20S prosomes but not 26S proteasomes are thus part of the RNA-dependent nuclear matrix. We suggest that giant pre-mRNA and FDTs in processing, aligning prosomes and other RNA-binding proteins are involved in the organization of the dynamic nuclear matrix. It is proposed that the putative function of RNA within the nuclear matrix and, thus, the nuclear dynamic architecture, might explain the giant size and complex organization of primary transcripts and their introns

    Respiratory Tract Infections and Laboratory Diagnostic Methods: A Review with A Focus on Syndromic Panel-Based Assays

    No full text
    Respiratory tract infections (RTIs) are the focus of developments in public health, given their widespread distribution and the high morbidity and mortality rates reported worldwide. The clinical spectrum ranges from asymptomatic or mild infection to severe or fatal disease. Rapidity is required in diagnostics to provide adequate and prompt management of patients. The current algorithm for the laboratory diagnosis of RTIs relies on multiple approaches including gold-standard conventional methods, among which the traditional culture is the most used, and innovative ones such as molecular methods, mostly used to detect viruses and atypical bacteria. The implementation of molecular methods with syndromic panels has the potential to be a powerful decision-making tool for patient management despite requiring appropriate use of the test in different patient populations. Their use radically reduces time-to-results and increases the detection of clinically relevant pathogens compared to conventional methods. Moreover, if implemented wisely and interpreted cautiously, syndromic panels can improve antimicrobial use and patient outcomes, and optimize laboratory workflow. In this review, a narrative overview of the main etiological, clinical, and epidemiological features of RTI is reported, focusing on the laboratory diagnosis and the potentialities of syndromic panels
    • …
    corecore