20 research outputs found

    Influence of energy dissipation at the interphase boundaries on impact fracture behaviour of a plain carbon steel

    No full text
    The paper deals with the impact deformation and fracture behaviour of commercial plain carbon pipe steel 17Mn1Si. The explicit account of the internal grain structure, temperature and geometry of the notch have been made in theoretical physical mesomechanics formulation aiming at in depth understanding of the role of strain energy factors in dynamic fracture. Theoretical method of excitable cellular automata and laboratory impact bending tests followed by fractographic analysis were paired with time–frequency analysis of acoustic emission accompanying local deformation and fracture processes. It was shown that formulation of the crack opening criterion under dynamic loading conditions should explicitly account for rotation energy accumulation and incorporate the microscopic temporal and spatial details of defect generation from internal (grain) boundaries. A fairly good agreement has been found between the strain energy characteristics obtained from mechanical loading data and independently measured acoustic emission signal being distinguished in terms of consumed and released energy. The impact toughness almost linearly decreased with temperature, which was consistent with fractographic observations. At the stage of crack initiation, when the energy dissipation processes at the internal structure elements significantly affect the initiation of dynamic fracture, the acoustic emission energy reduced in proportion to the expended mechanical energy, which considerably decreased with temperature. The vital role of the energy release at interface/grain boundaries and its decreased significance with decreasing temperature was demonstrated both in numeric simulations and in dynamic experiments

    Deep neural networks for plasma tomography with applications to JET and COMPASS

    No full text
    Convolutional neural networks (CNNs) have found applications in many image processing tasks, such as feature extraction, image classification, and object recognition. It has also been shown that the inverse of CNNs, so-called deconvolutional neural networks, can be used for inverse problems such as plasma tomography. In essence, plasma tomography consists in reconstructing the 2D plasma profile on a poloidal cross-section of a fusion device, based on line-integrated measurements from multiple radiation detectors. Since the reconstruction process is computationally intensive, a deconvolutional neural network trained to produce the same results will yield a significant computational speedup, at the expense of a small error which can be assessed using different metrics. In this work, we discuss the design principles behind such networks, including the use of multiple layers, how they can be stacked, and how their dimensions can be tuned according to the number of detectors and the desired tomographic resolution for a given fusion device. We describe the application of such networks at JET and COMPASS, where at JET we use the bolometer system, and at COMPASS we use the soft X-ray diagnostic based on photodiode arrays

    Role of fast ion pressure in the isotope effect in JET L-mode plasmas

    No full text
    This paper presents results of JET ITER-like wall L-mode experiments in hydrogen and deuterium (D) plasmas, dedicated to the study of the isotope dependence of ion heat transport by determination of the ion critical gradient and stiffness by varying the ion cyclotron resonance heating power deposition. When no strong role of fast ions in the plasma core is expected, the main difference between the two isotope plasmas is determined by the plasma edge and the core behavior is consistent with a gyro-Bohm scaling. When the heating power (and the fast ion pressure) is increased, in addition to the difference in the edge region, also the plasma core shows substantial changes. The stabilization of ion heat transport by fast ions, clearly visible in D plasmas, appears to be weaker in H plasmas, resulting in a higher ion heat flux in H with apparent anti-gyro-Bohm mass scaling. The difference is found to be caused by the different fast ion pressure between H and D plasmas, related to the heating power settings and to the different fast ion slowing down time, and is completely accounted for in non-linear gyrokinetic simulations. The application of the TGLF quasi-linear model to this set of data is also discussed

    First principles and integrated modelling achievements towards trustful fusion power predictions for JET and ITER

    No full text
    Predictability of burning plasmas is a key issue for designing and building credible future fusion devices. In this context, an important effort of physics understanding and guidance is being carried out in parallel to JET experimental campaigns in H and D by performing analyses and modelling towards an improvement of the understanding of DT physics for the optimization of the JET-DT neutron yield and fusion born alpha particle physics. Extrapolations to JET-DT from recent experiments using the maximum power available have been performed including some of the most sophisticated codes and a broad selection of models. There is a general agreement that 11-15 MW of fusion power can be expected in DT for the hybrid and baseline scenarios. On the other hand, in high beta, torque and fast ion fraction conditions, isotope effects could be favourable leading to higher fusion yield. It is shown that alpha particles related physics, such as TAE destabilization or fusion power electron heating, could be studied in ITER relevant JET-DT plasmas

    Ion cyclotron resonance heating scenarios for DEMO

    No full text
    The present paper offers an overview of the potential of ion cyclotron resonance heating (ICRH) or radio frequency heating for the DEMO machine. It is found that various suitable heating schemes are available. Similar to ITER and in view of the limited bandwidth of about 10 MHz that can be achieved to ensure optimal functioning of the launcher, it is proposed to make core second harmonic tritium heating the key ion heating scheme, assisted by fundamental cyclotron heating He-3 in the early phase of the discharge; for the present design of DEMO-with a static magnetic field strength of B-o = 5.855 T-that places the T and 3He layers in the core for f = 60 MHz and suggests centering the bandwidth around that main operating frequency. In line with earlier studies for hot, dense plasmas in large-size magnetic confinement machines, it is shown that good single pass absorption is achieved but that the size as well as the operating density and temperature of the machine cause the electrons to absorb a non-negligible fraction of the power away from the core when core ion heating is aimed at. Current drive and alternative heating options are briefly discussed and a dedicated computation is done for the traveling wave antenna, proposed for DEMO in view of its compatibility with substantial antenna-plasma distances. The various tasks that ICRH can fulfill are briefly listed. Finally, the impact of transport and the sensitivity of the obtained results to changes in the machine parameters is commented on
    corecore