74 research outputs found

    Metabolomics of the interaction between PPAR-α and age in the PPAR-α-null mouse

    Get PDF
    Regulation between the fed and fasted states in mammals is partially controlled by peroxisome proliferator-activated receptor-α (PPAR-α). Expression of the receptor is high in the liver, heart and skeletal muscle, but decreases with age. A combined 1H nuclear magnetic resonance (NMR) spectroscopy and gas chromatography-mass spectrometry metabolomic approach has been used to examine metabolism in the liver, heart, skeletal muscle and adipose tissue in PPAR-α-null mice and wild-type controls during ageing between 3 and 13 months. For the PPAR-α-null mouse, multivariate statistics highlighted hepatic steatosis, reductions in the concentrations of glucose and glycogen in both the liver and muscle tissue, and profound changes in lipid metabolism in each tissue, reflecting known expression targets of the PPAR-α receptor. Hepatic glycogen and glucose also decreased with age for both genotypes. These findings indicate the development of age-related hepatic steatosis in the PPAR-α-null mouse, with the normal metabolic changes associated with ageing exacerbating changes associated with genotype. Furthermore, the combined metabolomic and multivariate statistics approach provides a robust method for examining the interaction between age and genotype

    The Gracilis Myocutaneous Free Flap: A Quantitative Analysis of the Fasciocutaneous Blood Supply and Implications for Autologous Breast Reconstruction

    Get PDF
    BACKGROUND: Mastectomies are one of the most common surgical procedures in women of the developed world. The gracilis myocutaneous flap is favoured by many reconstructive surgeons due to the donor site profile and speed of dissection. The distal component of the longitudinal skin paddle of the gracilis myocutaneous flap is unreliable. This study quantifies the fasciocutaneous vascular territories of the gracilis flap and offers the potential to reconstruct breasts of all sizes. METHODS: Twenty-seven human cadaver dissections were performed and injected using lead oxide into the gracilis vascular pedicles, followed by radiographic studies to identify the muscular and fasciocutaneous perforator patterns. The vascular territories and choke zones were characterized quantitatively using the 'Lymphatic Vessel Analysis Protocol' (LVAP) plug-in for Image J® software. RESULTS: We found a step-wise decrease in the average vessel density from the upper to middle and lower thirds of both the gracilis muscle and the overlying skin paddle with a significantly higher average vessel density in the skin compared to the muscle. The average vessel width was greater in the muscle. Distal to the main pedicle, there were either one (7/27 cases), two (14/27 cases) or three (6/27 cases) minor pedicles. The gracilis angiosome was T-shaped and the maximum cutaneous vascular territory for the main and first minor pedicle was 35 × 19 cm and 34 × 10 cm, respectively. CONCLUSION: Our findings support the concept that small volume breast reconstructions can be performed on suitable patients, based on septocutaneous perforators from the minor pedicle without the need to harvest any muscle, further reducing donor site morbidity. For large reconstructions, if a 'T' or tri-lobed flap with an extended vertical component is needed, it is important to establish if three territories are present. Flap reliability and size may be optimized following computed tomographic angiography and surgical delay

    The spin label amino acid TOAC and its uses in studies of peptides: chemical, physicochemical, spectroscopic, and conformational aspects

    Get PDF
    We review work on the paramagnetic amino acid 2,2,6,6-tetramethyl-N-oxyl-4-amino-4-carboxylic acid, TOAC, and its applications in studies of peptides and peptide synthesis. TOAC was the first spin label probe incorporated in peptides by means of a peptide bond. In view of the rigid character of this cyclic molecule and its attachment to the peptide backbone via a peptide bond, TOAC incorporation has been very useful to analyze backbone dynamics and peptide secondary structure. Many of these studies were performed making use of EPR spectroscopy, but other physical techniques, such as X-ray crystallography, CD, fluorescence, NMR, and FT-IR, have been employed. The use of double-labeled synthetic peptides has allowed the investigation of their secondary structure. A large number of studies have focused on the interaction of peptides, both synthetic and biologically active, with membranes. In the latter case, work has been reported on ligands and fragments of GPCR, host defense peptides, phospholamban, and β-amyloid. EPR studies of macroscopically aligned samples have provided information on the orientation of peptides in membranes. More recent studies have focused on peptide–protein and peptide–nucleic acid interactions. Moreover, TOAC has been shown to be a valuable probe for paramagnetic relaxation enhancement NMR studies of the interaction of labeled peptides with proteins. The growth of the number of TOAC-related publications suggests that this unnatural amino acid will find increasing applications in the future

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
    corecore