87 research outputs found

    Bovine colostrum supplementation and upper respiratory symptoms during exercise training: a systematic review and meta-analysis of randomised controlled trials

    Get PDF
    Abstract Background Bovine colostrum is proposed as a nutritional countermeasure to the risk of upper respiratory symptoms (URS) during exercise training. The aim of this systematic review and meta-analysis was to estimate the size of the effect of bovine colostrum supplementation on URS. Methods Databases (CDSR, CENTRAL, Cinahl, ClinicalTrials.gov, Current Controlled Trials, DARE, EMBASE, Medline, PROSPERO and Web of Science) of published, unpublished and ongoing studies were searched for randomised controlled trials of healthy adults (≥18 years), evaluating the effect of oral bovine colostrum supplementation compared to a concurrent control group on URS. Results Five trials (152 participants) met the inclusion criteria, all of which involved individuals involved in regular exercise training. Over an 8–12 week follow-up period, bovine colostrum supplementation when compared to placebo significantly reduced the incidence rate of URS days (rate ratio 0.56, 95 % confidence intervals 0.43 to 0.72, P value < 0.001) and URS episodes (0.62, 0.40 to 0.99, P value = 0.04) by 44 and 38 % respectively. There were limited data and considerable variation in results of included studies for duration of URS episodes hence a meta-analysis of this outcome was deemed inappropriate. The risk of bias assessment in this review was hindered by poor reporting practices of included studies. Due to incomplete reporting of study methods, four of the five studies were judged to have a moderate or high risk of overall bias. Our findings must be interpreted in relation to quantity and quality of the available evidence. Conclusions The present systematic review and meta-analysis provides evidence that bovine colostrum supplementation may be effective in preventing the incidence of URS days and episodes in adults engaged in exercise training. The fact that the majority of included studies did not report significant effects on URS outcomes mitigates concerns about publication bias. The point estimates of the random-effects meta-analyses are greater than the smallest clinically important difference, but the low precision of the individual study estimates means the evidence presented in this review needs to be followed up with an appropriately designed and adequately powered, randomised control trial

    Mapping gene associations in human mitochondria using clinical disease phenotypes

    Get PDF
    Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects within the mitochondrial system. The accompanying knowledgebase (http://www.mitophenome.org/) supports the study of clinical diseases and associated genes

    Preoperative serum carcinoembryonic antigen, albumin and age are supplementary to UICC staging systems in predicting survival for colorectal cancer patients undergoing surgical treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to determine influence of prognostic factors in addition to UICC staging systems, on cancer-specific and overall survival rates for patients with colorectal cancer (CRC) undergoing surgical treatment.</p> <p>Methods</p> <p>Between January 1996 and December 2006, a total of 1367 CRC patients who underwent surgical treatment in Kaohsiung Medical University Hospital were analyzed. We retrospectively investigated clinicopathologic features of these patients. All patients were followed up intensively, and their outcomes were investigated completely.</p> <p>Results</p> <p>Of 1367 CRC patients, there were seven hundred and fifty-seven males (55.4%) and 610 (44.6%) females. The median follow-up period was 60 months (range, 3–132 months). A multivariate analysis identified that low serum albumin level (<it>P </it>= 0.011), advanced UICC stage (<it>P </it>< 0.001), and high carcinoembryonic antigen (CEA) level (<it>P </it>< 0.001) were independent prognostic factors of cancer-specific survival. Meanwhile, a multivariate analysis showed age over 65 years (<it>P </it>< 0.001), advanced UICC stage (<it>P </it>< 0.001), and high CEA level (<it>P </it>< 0.001) were independent prognostic factors of overall survival. Furthermore, combination of UICC stage, serum CEA and albumin levels as predictors of cancer-specific survival showed that the poorer the prognostic factors involved, the poorer the cancer-specific survival rate. Likewise, combination of UICC stage, age and serum CEA level as predictors of overall survival showed that the poorer the prognostic factors involved, the poorer the overall survival rate. Of these prognostic factors, preoperative serum CEA level was the only significant prognostic factor for patients with stage II and III CRCs in both cancer-specific and overall survival categories.</p> <p>Conclusion</p> <p>Preoperative serum albumin level, CEA level and age could prominently affect postoperative outcome of CRC patients undergoing surgical treatment. In addition to conventional UICC staging system, it might be imperative to take these additional characteristics of factors into account in CRC patients prior to surgical treatment.</p

    MicroRNA-34a modulates genes involved in cellular motility and oxidative phosphorylation in neural precursors derived from human umbilical cord mesenchymal stem cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mesenchymal stem cell (MSC) found in bone marrow (BM-MSCs) and the Wharton's jelly matrix of human umbilical cord (WJ-MSCs) are able to transdifferentiate into neuronal lineage cells both <it>in vitro </it>and <it>in vivo </it>and therefore hold the potential to treat neural disorders such as stroke or Parkinson's disease. In bone marrow MSCs, miR-130a and miR-206 have been show to regulate the synthesis of neurotransmitter substance P in human mesenchymal stem cell-derived neuronal cells. However, how neuronal differentiation is controlled in WJ-MSC remains unclear.</p> <p>Methods</p> <p>WJ-MSCs were isolated from human umbilical cords. We subjected WJ-MSCs into neurogenesis by a published protocol, and the miRNome patterns of WJ-MSCs and their neuronal progenitors (day 9 after differentiation) were analyzed by the Agilent microRNA microarray.</p> <p>Results</p> <p>Five miRNAs were enriched in WJ-MSCs, including miR-345, miR-106a, miR-17-5p, miR-20a and miR-20b. Another 11 miRNAs (miR-206, miR-34a, miR-374, miR-424, miR-100, miR-101, miR-323, miR-368, miR-137, miR-138 and miR-377) were abundantly expressed in transdifferentiated neuronal progenitors. Among these miRNAs, miR-34a and miR-206 were the only 2 miRNAs been linked to BM-MSC neurogenesis. Overexpressing miR-34a in cells suppressed the expression of 136 neuronal progenitor genes, which all possess putative miR-34a binding sites. Gene enrichment analysis according to the Gene Ontology database showed that those 136 genes were associated with cell motility, energy production (including those with oxidative phosphorylation, electron transport and ATP synthesis) and actin cytoskeleton organization, indicating that miR-34a plays a critical role in precursor cell migration. Knocking down endogenous miR-34a expression in WJ-MSCs resulted in the augment of WJ-MSC motility.</p> <p>Conclusions</p> <p>Our data suggest a critical role of miRNAs in MSC neuronal differentiation, and miR-34a contributes in neuronal precursor motility, which may be crucial for stem cells to home to the target sites they should be.</p

    Constructing Biological Pathways by a Two-Step Counting Approach

    Get PDF
    Networks are widely used in biology to represent the relationships between genes and gene functions. In Boolean biological models, it is mainly assumed that there are two states to represent a gene: on-state and off-state. It is typically assumed that the relationship between two genes can be characterized by two kinds of pairwise relationships: similarity and prerequisite. Many approaches have been proposed in the literature to reconstruct biological relationships. In this article, we propose a two-step method to reconstruct the biological pathway when the binary array data have measurement error. For a pair of genes in a sample, the first step of this approach is to assign counting numbers for every relationship and select the relationship with counting number greater than a threshold. The second step is to calculate the asymptotic p-values for hypotheses of possible relationships and select relationships with a large p-value. This new method has the advantages of easy calculation for the counting numbers and simple closed forms for the p-value. The simulation study and real data example show that the two-step counting method can accurately reconstruct the biological pathway and outperform the existing methods. Compared with the other existing methods, this two-step method can provide a more accurate and efficient alternative approach for reconstructing the biological network

    IGF1 Is a Common Target Gene of Ewing's Sarcoma Fusion Proteins in Mesenchymal Progenitor Cells

    Get PDF
    The EWS-FLI-1 fusion protein is associated with 85-90% of Ewing's sarcoma family tumors (ESFT), the remaining 10-15% of cases expressing chimeric genes encoding EWS or FUS fused to one of several ets transcription factor family members, including ERG-1, FEV, ETV1 and ETV6. ESFT are dependent on insulin-like growth factor-1 (IGF-1) for growth and survival and recent evidence suggests that mesenchymal progenitor/stem cells constitute a candidate ESFT origin. To address the functional relatedness between ESFT-associated fusion proteins, we compared mouse progenitor cell (MPC) permissiveness for EWS-FLI-1, EWS-ERG and FUS-ERG expression and assessed the corresponding expression profile changes. Whereas all MPC isolates tested could stably express EWS-FLI-1, only some sustained stable EWS-ERG expression and none could express FUS-ERG for more than 3-5 days. Only 14% and 4% of the total number of genes that were respectively induced and repressed in MPCs by the three fusion proteins were shared. However, all three fusion proteins, but neither FLI-1 nor ERG-1 alone, activated the IGF1 promoter and induced IGF1 expression. Whereas expression of different ESFT-associated fusion proteins may require distinct cellular microenvironments and induce transcriptome changes of limited similarity, IGF1 induction may provide one common mechanism for their implication in ESFT pathogenesis

    Lipoprotein lipase is frequently overexpressed or translocated in cervical squamous cell carcinoma and promotes invasiveness through the non-catalytic C terminus.

    Get PDF
    BACKGROUND: We studied the biological significance of genes involved in a novel t(8;12)(p21.3;p13.31) reciprocal translocation identified in cervical squamous cell carcinoma (SCC) cells. METHODS: The rearranged genes were identified by breakpoint mapping, long-range PCR and sequencing. We investigated gene expression in vivo using reverse-transcription PCR and tissue microarrays, and studied the phenotypic consequences of forced gene overexpression. RESULTS: The rearrangement involved lipoprotein lipase (LPL) and peroxisome biogenesis factor-5 (PEX5). Whereas LPL-PEX5 was expressed at low levels and contained a premature stop codon, PEX5-LPL was highly expressed and encoded a full-length chimeric protein (including the majority of the LPL coding region). Consistent with these findings, PEX5 was constitutively expressed in normal cervical squamous cells, whereas LPL expression was negligible. The LPL gene was rearranged in 1 out of 151 cervical SCCs, whereas wild-type LPL overexpression was common, being detected in 10 out of 28 tissue samples and 4 out of 10 cell lines. Forced overexpression of wild-type LPL and PEX5-LPL fusion transcripts resulted in increased invasiveness in cervical SCC cells, attributable to the C-terminal non-catalytic domain of LPL, which was retained in the fusion transcripts. CONCLUSION: This is the first demonstration of an expressed fusion gene in cervical SCC. Overexpressed wild-type or translocated LPL is a candidate for targeted therapy

    Serine Protease PRSS23 Is Upregulated by Estrogen Receptor α and Associated with Proliferation of Breast Cancer Cells

    Get PDF
    Serine protease PRSS23 is a newly discovered protein that has been associated with tumor progression in various types of cancers. Interestingly, PRSS23 is coexpressed with estrogen receptor α (ERα), which is a prominent biomarker and therapeutic target for human breast cancer. Estrogen signaling through ERα is also known to affect cell proliferation, apoptosis, and survival, which promotes tumorigenesis by regulating the production of numerous downstream effector proteins
    corecore