33 research outputs found

    A Novel Interhemispheric Interaction: Modulation of Neuronal Cooperativity in the Visual Areas

    Get PDF
    Background: The cortical representation of the visual field is split along the vertical midline, with the left and the right hemi-fields projecting to separate hemispheres. Connections between the visual areas of the two hemispheres are abundant near the representation of the visual midline. It was suggested that they re-establish the functional continuity of the visual field by controlling the dynamics of the responses in the two hemispheres. Methods/Principal Findings: To understand if and how the interactions between the two hemispheres participate in processing visual stimuli, the synchronization of responses to identical or different moving gratings in the two hemi-fields were studied in anesthetized ferrets. The responses were recorded by multiple electrodes in the primary visual areas and the synchronization of local field potentials across the electrodes were analyzed with a recent method derived from dynamical system theory. Inactivating the visual areas of one hemisphere modulated the synchronization of the stimulus-driven activity in the other hemisphere. The modulation was stimulus-specific and was consistent with the fine morphology of callosal axons in particular with the spatio-temporal pattern of activity that axonal geometry can generate. Conclusions/Significance: These findings describe a new kind of interaction between the cerebral hemispheres and highlight the role of axonal geometry in modulating aspects of cortical dynamics responsible for stimulus detection and/or categorization

    Childhood rhabdomyosarcoma metastatic to bone marrow presenting with disseminated intravascular coagulation and acute tumour lysis syndrome: review of the literature apropos of two cases

    Get PDF
    The paper presents diagnostic and therapeutic difficulties in two adolescents with widespread rhabdomyosarcoma (RMS) presenting with severe haemorrhages resulting from disseminated intravascular coagulation (DIC) and with laboratory features of acute tumour lysis syndrome (ATLS). Other published cases of childhood RMS with DIC at admission have been listed and reviewed. It has been concluded that the clinical picture of a widespread RMS in children may resemble acute hematologic malignancy and pose a big diagnostic problem. That is why the presence of small blue round cells morphologically similar to lymphoblasts and/or myeloblasts in bone marrow (BM), lacking hematopoietic makers, should prompt the pathologist to consider possible diagnosis of RMS. Inclusion of desmin, MyoD1 and myogenin Myf4 to the immunohistochemical panel is obligatory in such cases. When the representative histopathological tumour specimens are difficult to obtain, the flow cytometric immunophenotyping of BM metastases could help the standard morphological/immunohistological diagnostic procedures and advance the diagnosis. Recently, the flow cytometric CD45− CD56+ immunophenotype together with Myf4 transcript has been assigned to RMS cells infiltrating BM. In children with disseminated RMS complicated with DIC rapid polychemotherapy aimed at diminishing the malignancy-triggered procoagulant activity should be initiated. However, in cases with concomitant ATLS the initial doses of chemotherapy should be reduced and the metabolic disorders and renal function monitored. The prognosis in children with RMS metastatic to BM with signs of DIC or ATLS at admission depends on the response to chemotherapy, however generally it is highly disappointing

    Enhanced Transferrin Receptor Expression by Proinflammatory Cytokines in Enterocytes as a Means for Local Delivery of Drugs to Inflamed Gut Mucosa

    Get PDF
    Therapeutic intervention in inflammatory bowel diseases (IBDs) is often associated with adverse effects related to drug distribution into non-diseased tissues, a situation which attracts a rational design of a targeted treatment confined to the inflamed mucosa. Upon activation of immune cells, transferrin receptor (TfR) expression increases at their surface. Because TfR is expressed in all cell types we hypothesized that its cell surface levels are regulated also in enterocytes. We, therefore, compared TfR expression in healthy and inflamed human colonic mucosa, as well as healthy and inflamed colonic mucosa of the DNBS-induced rat model. TfR expression was elevated in the colonic mucosa of IBD patients in both the basolateral and apical membranes of the enterocytes. Increased TfR expression was also observed in colonocytes of the induced colitis rats. To explore the underlying mechanism CaCo-2 cells were treated with various proinflammatory cytokines, which increased both TfR expression and transferrin cellular uptake in a mechanism that did not involve hyper proliferation. These findings were then exploited for the design of targetable carrier towards inflamed regions of the colon. Anti-TfR antibodies were conjugated to nano-liposomes. As expected, iron-starved Caco-2 cells internalized anti-TfR immunoliposomes better than controls. Ex vivo binding studies to inflamed mucosa showed that the anti-TfR immunoliposomes accumulated significantly better in the mucosa of DNBS-induced rats than the accumulation of non-specific immunoliposomes. It is concluded that targeting mucosal inflammation can be accomplished by nano-liposomes decorated with anti-TfR due to inflammation-dependent, apical, elevated expression of the receptor

    Ostriches Sleep like Platypuses

    Get PDF
    Mammals and birds engage in two distinct states of sleep, slow wave sleep (SWS) and rapid eye movement (REM) sleep. SWS is characterized by slow, high amplitude brain waves, while REM sleep is characterized by fast, low amplitude waves, known as activation, occurring with rapid eye movements and reduced muscle tone. However, monotremes (platypuses and echidnas), the most basal (or ‘ancient’) group of living mammals, show only a single sleep state that combines elements of SWS and REM sleep, suggesting that these states became temporally segregated in the common ancestor to marsupial and eutherian mammals. Whether sleep in basal birds resembles that of monotremes or other mammals and birds is unknown. Here, we provide the first description of brain activity during sleep in ostriches (Struthio camelus), a member of the most basal group of living birds. We found that the brain activity of sleeping ostriches is unique. Episodes of REM sleep were delineated by rapid eye movements, reduced muscle tone, and head movements, similar to those observed in other birds and mammals engaged in REM sleep; however, during REM sleep in ostriches, forebrain activity would flip between REM sleep-like activation and SWS-like slow waves, the latter reminiscent of sleep in the platypus. Moreover, the amount of REM sleep in ostriches is greater than in any other bird, just as in platypuses, which have more REM sleep than other mammals. These findings reveal a recurring sequence of steps in the evolution of sleep in which SWS and REM sleep arose from a single heterogeneous state that became temporally segregated into two distinct states. This common trajectory suggests that forebrain activation during REM sleep is an evolutionarily new feature, presumably involved in performing new sleep functions not found in more basal animals

    Evidence-based Kernels: Fundamental Units of Behavioral Influence

    Get PDF
    This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior–influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior

    Transferrin is required for early T-cell differentiation

    No full text
    Transferrin, the major plasma iron carrier, mediates iron entry into cells through interaction with its receptor. Several in vitro studies have demonstrated that transferrin plays an essential role in lymphocyte division, a role attributed to its iron transport function. In the present study we used hypotransferrinaemic (Trf(hpx/hpx)) mice to investigate the possible involvement of transferrin in T lymphocyte differentiation in vivo. The absolute number of thymocytes was substantially reduced in Trf(hpx/hpx) mice, a result that could not be attributed to increased apoptosis. Moreover, the proportions of the four major thymic subpopulations were maintained and the percentage of dividing cells was not reduced. A leaky block in the differentiation of CD4(−) CD8(−) CD3(−) CD44(−) CD25(+) (TN3) into CD4(−) CD8(−) CD3(−) CD44(−) CD25(−) (TN4) cells was observed. In addition, a similar impairment of early thymocyte differentiation was observed in mice with reduced levels of transferrin receptor. The present study demonstrates, for the first time, that transferrin itself or a pathway triggered by the interaction of transferrin with its receptor is essential for normal early T-cell differentiation in vivo

    Functional topography of the low postcentral area

    No full text
    Object. The goal of this study was to establish a reliable method for identification of face and tongue sensory function in the lower central area
    corecore