1,352 research outputs found

    A non-spherical core in the explosion of supernova SN 2004dj

    Get PDF
    An important and perhaps critical clue to the mechanism driving the explosion of massive stars as supernovae is provided by the accumulating evidence for asymmetry in the explosion. Indirect evidence comes from high pulsar velocities, associations of supernovae with long-soft gamma-ray bursts, and asymmetries in late-time emission-line profiles. Spectropolarimetry provides a direct probe of young supernova geometry, with higher polarization generally indicating a greater departure from spherical symmetry. Large polarizations have been measured for 'stripped-envelope' (that is, type Ic) supernovae, which confirms their non-spherical morphology; but the explosions of massive stars with intact hydrogen envelopes (type II-P supernovae) have shown only weak polarizations at the early times observed. Here we report multi-epoch spectropolarimetry of a classic type II-P supernova that reveals the abrupt appearance of significant polarization when the inner core is first exposed in the thinning ejecta (~90 days after explosion). We infer a departure from spherical symmetry of at least 30 per cent for the inner ejecta. Combined with earlier results, this suggests that a strongly non-spherical explosion may be a generic feature of core-collapse supernovae of all types, where the asphericity in type II-P supernovae is cloaked at early times by the massive, opaque, hydrogen envelope.Comment: Accepted for publication by Nature (results embargoed until 23 March 2006); 14 pages, 2 figure

    Spectropolarimetry of Supernovae

    Full text link
    Overwhelming evidence has accumulated in recent years that supernova explosions are intrinsically 3-dimensional phenomena with significant departures from spherical symmetry. We review the evidence derived from spectropolarimetry that has established several key results: virtually all supernovae are significantly aspherical near maximum light; core-collapse supernovae behave differently than thermonuclear (Type Ia) supernovae; the asphericity of core-collapse supernovae is stronger in the inner layers showing that the explosion process itself is strongly aspherical; core-collapse supernovae tend to establish a preferred direction of asymmetry; the asphericity is stronger in the outer layers of thermonuclear supernovae providing constraints on the burning process. We emphasize the utility of the Q/U plane as a diagnostic tool and revisit SN 1987A and SN 1993J in a contemporary context. An axially-symmetric geometry can explain many basic features of core-collapse supernovae, but significant departures from axial symmetry are needed to explain most events. We introduce a spectropolarimetry type to classify the range of behavior observed in polarized supernovae. Understanding asymmetries in supernovae is important for phenomena as diverse as the origins of gamma-ray bursts and the cosmological applications of Type Ia supernovae in studies of the dark energy content of the universe.Comment: Draft of Annual Review article prior to final copy editing; 85 pages, 13 figures, 1 tabl

    Supplier-induced demand for psychiatric admissions in Northern New England

    Get PDF
    The development of hospital service areas (HSAs) using small area analysis has been useful in examining variation in medical and surgical care; however, the techniques of small area analysis are underdeveloped in understanding psychiatric admission rates. We sought to develop these techniques in order to understand the relationship between psychiatric bed supply and admission rates in Northern New England. Our primary hypotheses were that there would be substantial variation in psychiatric admission across geographic settings and that bed availability would be positively correlated with admission rates, reflecting a supplier-induced demand phenomenon. Our secondary hypothesis was that the construction of psychiatric HSAs (PHSAs) would yield more meaningful results than the use of existing general medical hospital service areas

    The influence of 'significant others' on persistent back pain and work participation: a qualitative exploration of illness perceptions

    Get PDF
    Background Individual illness perceptions have been highlighted as important influences on clinical outcomes for back pain. However, the illness perceptions of 'significant others' (spouse/partner/close family member) are rarely explored, particularly in relation to persistent back pain and work participation. The aim of this study was to initiate qualitative research in this area in order to further understand these wider influences on outcome. Methods Semi-structured interviews based on the chronic pain version of the Illness Perceptions Questionnaire-Revised were conducted with a convenience sample of UK disability benefit claimants, along with their significant others (n=5 dyads). Data were analysed using template analysis. Results Significant others shared, and perhaps further reinforced, claimants' unhelpful illness beliefs including fear of pain/re-injury associated with certain types of work and activity, and pessimism about the likelihood of return to work. In some cases, significant others appeared more resigned to the permanence and negative inevitable consequences of the claimant's back pain condition on work participation, and were more sceptical about the availability of suitable work and sympathy from employers. In their pursuit of authenticity, claimants were keen to stress their desire to work whilst emphasising how the severity and physical limitations of their condition prevented them from doing so. In this vein, and seemingly based on their perceptions of what makes a 'good' significant other, significant others acted as a 'witness to pain', supporting claimants' self-limiting behaviour and statements of incapacity, often responding with empathy and assistance. The beliefs and responses of significant others may also have been influenced by their own experience of chronic illness, thus participants lives were often intertwined and defined by illness. Conclusions The findings from this exploratory study reveal how others and wider social circumstances might contribute both to the propensity of persistent back pain and to its consequences. This is an area that has received little attention to date, and wider support of these findings may usefully inform the design of future intervention programmes aimed at restoring work participation

    New Mechanics of Traumatic Brain Injury

    Full text link
    The prediction and prevention of traumatic brain injury is a very important aspect of preventive medical science. This paper proposes a new coupled loading-rate hypothesis for the traumatic brain injury (TBI), which states that the main cause of the TBI is an external Euclidean jolt, or SE(3)-jolt, an impulsive loading that strikes the head in several coupled degrees-of-freedom simultaneously. To show this, based on the previously defined covariant force law, we formulate the coupled Newton-Euler dynamics of brain's micro-motions within the cerebrospinal fluid and derive from it the coupled SE(3)-jolt dynamics. The SE(3)-jolt is a cause of the TBI in two forms of brain's rapid discontinuous deformations: translational dislocations and rotational disclinations. Brain's dislocations and disclinations, caused by the SE(3)-jolt, are described using the Cosserat multipolar viscoelastic continuum brain model. Keywords: Traumatic brain injuries, coupled loading-rate hypothesis, Euclidean jolt, coupled Newton-Euler dynamics, brain's dislocations and disclinationsComment: 18 pages, 1 figure, Late

    Flavor conversion of cosmic neutrinos from hidden jets

    Full text link
    High energy cosmic neutrino fluxes can be produced inside relativistic jets under the envelopes of collapsing stars. In the energy range E ~ (0.3 - 1e5) GeV, flavor conversion of these neutrinos is modified by various matter effects inside the star and the Earth. We present a comprehensive (both analytic and numerical) description of the flavor conversion of these neutrinos which includes: (i) oscillations inside jets, (ii) flavor-to-mass state transitions in an envelope, (iii) loss of coherence on the way to observer, and (iv) oscillations of the mass states inside the Earth. We show that conversion has several new features which are not realized in other objects, in particular interference effects ("L- and H- wiggles") induced by the adiabaticity violation. The neutrino-neutrino scattering inside jet and inelastic neutrino interactions in the envelope may produce some additional features at E > 1e4 GeV. We study dependence of the probabilities and flavor ratios in the matter-affected region on angles theta13 and theta23, on the CP-phase delta, as well as on the initial flavor content and density profile of the star. We show that measurements of the energy dependence of the flavor ratios will, in principle, allow to determine independently the neutrino and astrophysical parameters.Comment: 56 pages, 19 figures. Minor changes. Accepted by JHEP

    Bone Mineral Density and Vascular Calcification in Children and Young Adults With CKD 4 to 5 or on Dialysis

    Get PDF
    Introduction: Older adults with chronic kidney disease (CKD) can have low bone mineral density (BMD) with concurrent vascular calcification. Mineral accrual by the growing skeleton may protect young people with CKD from extraosseous calcification. Our hypothesis was that children and young adults with increasing BMD do not develop vascular calcification. Methods: This was a multicenter longitudinal study in children and young people (5–30 years) with CKD stages 4 to 5 or on dialysis. BMD was assessed by tibial peripheral quantitative computed tomography (pQCT) and lumbar spine dual-energy X-ray absorptiometry (DXA). The following cardiovascular imaging tests were undertaken: cardiac computed tomography for coronary artery calcification (CAC), ultrasound for carotid intima media thickness z-score (cIMTz), pulse wave velocity z-score (PWVz), and carotid distensibility for arterial stiffness. All measures are presented as age-adjusted and sex-adjusted z-scores. Results: One hundred participants (median age 13.82 years) were assessed at baseline and 57 followed up after a median of 1.45 years. Trabecular BMD z-score (TrabBMDz) decreased (P = 0.01), and there was a nonsignificant decrease in cortical BMD z-score (CortBMDz) (P = 0.09). Median cIMTz and PWVz showed nonsignificant increase (P = 0.23 and P = 0.19, respectively). The annualized increase in TrabBMDz (ΔTrabBMDz) was an independent predictor of cIMTz increase (R2 = 0.48, ÎČ = 0.40, P = 0.03). Young people who demonstrated statural growth (n = 33) had lower ΔTrabBMDz and also attenuated vascular changes compared with those with static growth (n = 24). Conclusion: This hypothesis-generating study suggests that children and young adults with CKD or on dialysis may develop vascular calcification even as their BMD increases. A presumed buffering capacity of the growing skeleton may offer some protection against extraosseous calcification

    Type Ia Supernovae as Stellar Endpoints and Cosmological Tools

    Full text link
    Empirically, Type Ia supernovae are the most useful, precise, and mature tools for determining astronomical distances. Acting as calibrated candles they revealed the presence of dark energy and are being used to measure its properties. However, the nature of the SN Ia explosion, and the progenitors involved, have remained elusive, even after seven decades of research. But now new large surveys are bringing about a paradigm shift --- we can finally compare samples of hundreds of supernovae to isolate critical variables. As a result of this, and advances in modeling, breakthroughs in understanding all aspects of SNe Ia are finally starting to happen.Comment: Invited review for Nature Communications. Final published version. Shortened, update

    Interacting Supernovae: Types IIn and Ibn

    Full text link
    Supernovae (SNe) that show evidence of strong shock interaction between their ejecta and pre-existing, slower circumstellar material (CSM) constitute an interesting, diverse, and still poorly understood category of explosive transients. The chief reason that they are extremely interesting is because they tell us that in a subset of stellar deaths, the progenitor star may become wildly unstable in the years, decades, or centuries before explosion. This is something that has not been included in standard stellar evolution models, but may significantly change the end product and yield of that evolution, and complicates our attempts to map SNe to their progenitors. Another reason they are interesting is because CSM interaction is an efficient engine for making bright transients, allowing super-luminous transients to arise from normal SN explosion energies, and allowing transients of normal SN luminosities to arise from sub-energetic explosions or low radioactivity yield. CSM interaction shrouds the fast ejecta in bright shock emission, obscuring our normal view of the underlying explosion, and the radiation hydrodynamics of the interaction is challenging to model. The CSM interaction may also be highly non-spherical, perhaps linked to binary interaction in the progenitor system. In some cases, these complications make it difficult to definitively tell the difference between a core-collapse or thermonuclear explosion, or to discern between a non-terminal eruption, failed SN, or weak SN. Efforts to uncover the physical parameters of individual events and connections to possible progenitor stars make this a rapidly evolving topic that continues to challenge paradigms of stellar evolution.Comment: Final draft of a chapter in the "SN Handbook". Accepted. 25 pages, 3 fig
    • 

    corecore