60 research outputs found

    Geochemistry, faunal composition and trophic structure in reducing sediments on the southwest South Georgia margin

    Get PDF
    Despite a number of studies in areas of focused methane seepage, the extent of transitional sediments of more diffuse methane seepage, and their influence upon biological communities is poorly understood. We investigated an area of reducing sediments with elevated levels of methane on the South Georgia margin around 250 m depth and report data from a series of geochemical and biological analyses. Here, the geochemical signatures were consistent with weak methane seepage and the role of sub-surface methane consumption was clearly very important, preventing gas emissions into bottom waters. As a result, the contribution of methane-derived carbon to the microbial and metazoan food webs was very limited, although sulfur isotopic signatures indicated a wider range of dietary contributions than was apparent from carbon isotope ratios. Macrofaunal assemblages had high dominance and were indicative of reducing sediments, with many taxa common to other similar environments and no seep-endemic fauna, indicating transitional assemblages. Also similar to other cold seep areas, there were samples of authigenic carbonate, but rather than occurring as pavements or sedimentary concretions, these carbonates were restricted to patches on the shells of Axinulus antarcticus (Bivalvia, Thyasiridae), which is suggestive of microbe–metazoan interactions

    Does targeting manual therapy and/or exercise improve patient outcomes in nonspecific low back pain? A systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A central element in the current debate about best practice management of non-specific low back pain (NSLBP) is the efficacy of targeted versus generic (non-targeted) treatment. Many clinicians and researchers believe that tailoring treatment to NSLBP subgroups positively impacts on patient outcomes. Despite this, there are no systematic reviews comparing the efficacy of targeted versus non-targeted manual therapy and/or exercise. This systematic review was undertaken in order to determine the efficacy of such targeted treatment in adults with NSLBP.</p> <p>Method</p> <p>MEDLINE, EMBASE, Current Contents, AMED and the Cochrane Central Register of Controlled Trials were electronically searched, reference lists were examined and citation tracking performed. Inclusion criteria were randomized controlled trials of targeted manual therapy and/or exercise for NSLPB that used trial designs capable of providing robust information on targeted treatment (treatment effect modification) for the outcomes of activity limitation and pain. Included trials needed to be hypothesis-testing studies published in English, Danish or Norwegian. Method quality was assessed using the criteria recommended by the Cochrane Back Review Group.</p> <p>Results</p> <p>Four high-quality randomized controlled trials of targeted manual therapy and/or exercise for NSLBP met the inclusion criteria. One study showed statistically significant effects for short-term outcomes using McKenzie directional preference-based exercise. Research into subgroups requires much larger sample sizes than traditional two-group trials and other included studies showed effects that might be clinically important in size but were not statistically significant with their samples sizes.</p> <p>Conclusions</p> <p>The clinical implications of these results are that they provide very cautious evidence supporting the notion that treatment targeted to subgroups of patients with NSLBP may improve patient outcomes. The results of the studies included in this review are too patchy, inconsistent and the samples investigated are too small for any recommendation of any treatment in routine clinical practice to be based on these findings. The research shows that adequately powered controlled trials using designs capable of providing robust information on treatment effect modification are uncommon. Considering how central the notion of targeted treatment is to manual therapy principles, further studies using this research method should be a priority for the clinical and research communities.</p

    Impact of elevated nitrate on sulfate-reducing bacteria: A comparative study of Desulfovibrio vulgaris

    Get PDF
    Sulfate-reducing bacteria have been extensively studied for their potential in heavy-metal bioremediation. However, the occurrence of elevated nitrate in contaminated environments has been shown to inhibit sulfate reduction activity. Although the inhibition has been suggested to result from the competition with nitrate-reducing bacteria, the possibility of direct inhibition of sulfate reducers by elevated nitrate needs to be explored. Using Desulfovibrio vulgaris as a model sulfate-reducing bacterium, functional genomics analysis reveals that osmotic stress contributed to growth inhibition by nitrate as shown by the upregulation of the glycine/betaine transporter genes and the relief of nitrate inhibition by osmoprotectants. The observation that significant growth inhibition was effected by 70 mM NaNO{sub 3} but not by 70 mM NaCl suggests the presence of inhibitory mechanisms in addition to osmotic stress. The differential expression of genes characteristic of nitrite stress responses, such as the hybrid cluster protein gene, under nitrate stress condition further indicates that nitrate stress response by D. vulgaris was linked to components of both osmotic and nitrite stress responses. The involvement of the oxidative stress response pathway, however, might be the result of a more general stress response. Given the low similarities between the response profiles to nitrate and other stresses, less-defined stress response pathways could also be important in nitrate stress, which might involve the shift in energy metabolism. The involvement of nitrite stress response upon exposure to nitrate may provide detoxification mechanisms for nitrite, which is inhibitory to sulfate-reducing bacteria, produced by microbial nitrate reduction as a metabolic intermediate and may enhance the survival of sulfate-reducing bacteria in environments with elevated nitrate level

    Safety out of control: dopamine and defence

    Full text link
    • …
    corecore