60 research outputs found

    Whole organisms or pure compounds? entourage effect versus drug specificity

    Get PDF
    As the therapeutic use of sacred plants and fungi becomes increasingly accepted by Western medicine, a tug of war has been taking place between those who advocate the traditional consumption of whole organisms and those who defend exclusively the utilization of purified compounds. The attempt to reduce organisms to single active principles is challenged by the sheer complexity of traditional medicine. Ayahuasca, for example, is a concoction of at least two plant species containing multiple psychoactive substances with complex interactions. Similarly, cannabis contains dozens of psychoactive substances whose specific combinations in different strains correspond to different types of therapeutic and cognitive effects. The “entourage effect” refers to the synergistic effects of the multiple compounds present in whole organisms, which may potentiate clinical efficacy while attenuating side effects. In opposition to this view, mainstream pharmacology is adamant about the need to use purified substances, presumably more specific and safe. In this chapter, I will review the evidence on both sides to discuss the scientific, economic, and political implications of this controversy. The evidence indicates that it is time to embrace the therapeutic complexity of psychedelics.2019-07-3

    Induction of a Novel Ca 2+

    No full text

    Expansion of Hepatic Stem Cell Compartment Boosts Liver Regeneration.

    Get PDF
    The hepatic stem cells reside periportally forming the canals of Hering in normal liver. They can be identified by their unique immunophenotype in rat. The oval cells, the progenies of stem cells invade deep the liver parenchyma after activation and differentiate into focally arranged small-and eventually trabecularly ordered regular hepatocytes. We have observed that upon the completion of intense oval cell reactions narrow ductular structures are present in the parenchyma, we propose to call them parenchymal ductules. These parenchymal ductules have the same immunophenotype [cytokeratin (CK)7-/CK19+/alpha-fetoprotein (AFP)-/delta-like protein (DLK)-] as the resting stem cells of the canals of Hering, but different from them reside scattered in the parenchyma. In our present experiments, we have investigated in an in vivo functional assay if the presence of these parenchymal ductules has any impact on a progenitor cell driven regeneration process. Parenchymal ductules were induced either by an established model of oval cell induction consisting of the administration of necrogenic dose of carbontetrachloride to 2-acetaminofluorene pretreated rats (AAF/CCl4) or a large necrogenic dose of diethylnitrosamine (DEN). The oval cells expanded faster and the foci evolved earlier after repeated injury in the livers with preexistent parenchymal ductules. When the animals were left to survive for one more year increased liver tumor formation was observed exclusively in the DEN treated rats. Thus, repeated oval cell reactions are not necessarily carcinogenic. We conclude that the expansion of hepatic stem cell compartment conceptually can be used to facilitate liver regeneration without an increased risk of tumorigenesis
    corecore