16 research outputs found

    Ecological genetics of inbreeding, outbreeding and immunocompetence in Ranid frogs

    Get PDF
    Using artificial fertilization, I crossed frogs from different populations to evaluate fitness consequences for the offspring from an inbreeding-outbreeding perspective, and to evaluate quantitative genetic effects on immunocompetence against a fungal pathogen (Saprolegnia). Crosses between closely situated populations of different sizes generated contrasting results for the effects of outbreeding on offspring traits between populations and life history stages, emphasizing the importance of epistatic effects and the difficulties of relying on generalizations when making conservation decisions (e.g., regarding translocations). Experimental infection of frog eggs from six populations with Saprolegnia fungus showed a significant family effect on the degree of infection of eggs and embryos, in particular at lower fertilization success and with a significant temperature × population interaction effect. A paternal genetic effect on fungus resistance was found using a half-sib split design. Furthermore, relatively more eggs were infected when fertilized by sperm from the same, in contrast with a different population. However, there was no evidence for a stronger effect in isolated island populations. Although the mechanistic underpinnings remain unknown, these results suggest substantial levels of genetic variation in resistance to Saprolegnia in natural populations within and among populations. We also found that pre-hatching exposure to Saprolegnia dramatically reduced the size at metamorphosis in the absence of further exposure to the fungus, possible as a delayed effect of impaired embryonic development. However, in contrast to some other amphibians, induced hatching in response to Saprolegnia could not be confirmed. In conclusion, the results suggest that frog populations are genetically diverse even at small geographic scale with frequently strong and unpredictable consequences of in- and outbreeding for the response to stressors

    Relative eye size in elasmobranchs

    No full text
    Variation in relative eye size was investigated in a sample of 46 species of elasmobranch, 32 species of sharks and 14 species of batoids (skates and rays). To get a measure of eye size relative to body size, eye axial diameter was scaled with body mass using least-squares linear regression, using both raw species data, where species are treated as independent data points, and phylogenetically independent contrasts. Residual values calculated for each species, using the regression equations describing these scaling relationships, were then used as a measure of relative eye size. Relative and absolute eye size varies considerably in elasmobranchs, although sharks have significantly relatively larger eyes than batoids. The sharks with the relatively largest eyes are oceanic species; either pelagic sharks that move between the epipelagic (0 -200 m) and 'upper' mesopelagic (200-600 m) zones, or benthic and benthopelagic species that live in the mesopelagic (200-1,000 m) and, to a lesser extent, bathypelagic (1,000-4,000 m) zones. The elasmobranchs with the relatively smallest eyes tend to be coastal, often benthic, batoids and sharks. Active benthopelagic and pelagic species, which prey on active, mobile prey also have relatively larger eyes than more sluggish, benthic elasmobranchs that feed on more sedentary prey such as benthic invertebrates. A significant positive correlation was found between absolute eye size and relative eye size, but some very large sharks, such as Carcharodon carcharias have absolutely large eyes, but have relatively small eyes in relation to body mass. Copyright © 2007 S. Karger AG, Base

    Using an Ecological Ethics Framework to Make Decisions about the Relocation of Wildlife

    No full text
    Relocation is an increasingly prominent conservation tool for a variety of wildlife, but the technique also is controversial, even among conservation practitioners. An organized framework for addressing the moral dilemmas often accompanying conservation actions such as relocation has been lacking. Ecological ethics may provide such a framework and appears to be an important step forward in aiding ecological researchers and biodiversity managers to make difficult moral choices. A specific application of this framework can make the reasoning process more transparent and give more emphasis to the strong sentiments about non-human organisms held by many potential users. Providing an example of the application of the framework may also increase the appeal of the reasoning process to ecological researchers and biodiversity managers. Relocation as a conservation action can be accompanied by a variety of moral dilemmas that reflect the interconnection of values, ethical positions, and conservation decisions. A model that is designed to address moral dilemmas arising from relocation of humans provides/demonstrates/illustrates a possible way to apply the ecological ethics framework and to involve practicing conservationists in the overall decision-making process
    corecore