38 research outputs found
Probiotic supplementation influences the diversity of the intestinal microbiota during early stages of farmed Senegalese sole (Solea senegalensis, Kaup, 1858)
Ingestion of bacteria at early stages results in establishment of a primary intestinal microbiota which likely undergoes several stages along fish life. The role of this intestinal microbiota regulating body functions is crucial for larval development. Probiotics have been proved to modulate this microbiota and exert antagonistic effects against fish pathogens. In the present study, we aimed to determine bacterial diversity along different developmental stages of farmed Senegalese sole (Solea senegalensis) after feeding probiotic (Shewanella putrefaciens Pdp11) supplemented diet for a short period (10–30 days after hatching, DAH). Intestinal lumen contents of sole larvae fed control and probiotic diets were collected at 23, 56, 87, and 119 DAH and DNA was amplified using 16S rDNA bacterial domain-specific primers. Amplicons obtained were separated by denaturing gradient gel electrophoresis (DGGE), cloned, and resulting sequences compared to sequences in GenBank. Results suggest that Shewanella putrefaciens Pdp11 induces a modulation of the dominant bacterial taxa of the intestinal microbiota from 23 DAH. DGGE patterns of larvae fed the probiotic diet showed a core of bands related to Lactobacillus helveticus, Pseudomonas acephalitica, Vibrio parahaemolyticus,and Shewanella genus, together with increased Vibri o genus presence. In addition, decreased number of clones related to Photobacterium damselae subsp piscicida at 23 and 56 DAH was observed in probiotic-fed larvae. A band corresponding to Shewanella putrefaciens Pdp11 was sequenced as predominant from 23 to 119 DAH samples, confirming the colonization by the probiotics. Microbiota modulation obtained via probiotics addition emerges as an effective tool to improve Solea senegalensis larviculture.En prens
High-flexibility combinatorial peptide synthesis with laser-based transfer of monomers in solid matrix material
Tropical pacific forcing of a 1998–1999 climate shift: observational analysis and climate model results for the boreal spring season
Diagnosis of historical inundation events in the Marshall Islands to assist early warning systems
Regulation of actin dynamics by annexin 2
Annexin 2 is a ubiquitous Ca(2+)-binding protein that is essential for actin-dependent vesicle transport. Here, we show that in spontaneously motile cells annexin 2 is concentrated in dynamic actin-rich protrusions, and that depletion of annexin 2 using siRNA leads to the accumulation of stress fibres and loss of protrusive and retractile activity. Cells co-expressing annexin 2-CFP and actin-YFP exhibit Ca(2+)-dependent fluorescense resonance energy transfer throughout the cytoplasm and in membrane ruffles and protrusions, suggesting that annexin 2 may directly interact with actin. This notion was supported by biochemical studies, in which we show that annexin 2 reduces the polymerisation rate of actin monomers in a dose-dependent manner. By measuring actin polymerisation rates in the presence of barbed-end and pointed-end cappers, we further demonstrate that annexin 2 specifically inhibits filament elongation at the barbed ends. These results show that annexin 2 has an essential role in maintaining the plasticity of the dynamic membrane-associated actin cytoskeleton, and that its activity in this context may be at least partly explained through direct interactions with polymerised and monomeric actin
