9 research outputs found

    Investigation into pedestrian exposure to near-vehicle exhaust emissions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inhalation of diesel particulate matter (DPM) is known to have a negative impact on human health. Consequently, there are regulations and standards that limit the maximum concentrations to which persons may be exposed and the maximum concentrations allowed in the ambient air. However, these standards consider steady exposure over large spatial and time scales. Due to the nature of many vehicle exhaust systems, pedestrians in close proximity to a vehicle's tailpipe may experience events where diesel particulate matter concentrations are high enough to cause acute health effects for brief periods of time.</p> <p>Methods</p> <p>In order to quantify these exposure events, instruments which measure specific exhaust constituent concentrations were placed near a roadway and connected to the mouth of a mannequin used as a pedestrian surrogate. By measuring concentrations at the mannequin's mouth during drive-by events with a late model diesel truck, a representative estimate of the exhaust constituent concentrations to which a pedestrian may be exposed was obtained. Typical breathing rates were then multiplied by the measured concentrations to determine the mass of pollutant inhaled.</p> <p>Results</p> <p>The average concentration of diesel particulate matter measured over the duration of a single drive-by test often exceeded the low concentrations used in human clinical studies which are known to cause acute health effects. It was also observed that higher concentrations of diesel particulate matter were measured at the height of a stroller than were measured at the mouth of a mannequin.</p> <p>Conclusion</p> <p>Diesel particulate matter concentrations during drive-by incidents easily reach or exceed the low concentrations that can cause acute health effects for brief periods of time. For the case of a particularly well-tuned late-model year vehicle, the mass of particulate matter inhaled during a drive-by incident is small compared to the mass inhaled daily at ambient conditions. On a per breath basis, however, the mass of particulate matter inhaled is large compared to the mass inhaled at ambient conditions. Finally, it was determined that children, infants, or people breathing at heights similar to that of a passing vehicle's tailpipe may be exposed to higher concentrations of particulate matter than those breathing at higher locations, such as adults standing up.</p

    Principles of genetic circuit design

    Get PDF
    Cells navigate environments, communicate and build complex patterns by initiating gene expression in response to specific signals. Engineers seek to harness this capability to program cells to perform tasks or create chemicals and materials that match the complexity seen in nature. This Review describes new tools that aid the construction of genetic circuits. Circuit dynamics can be influenced by the choice of regulators and changed with expression 'tuning knobs'. We collate the failure modes encountered when assembling circuits, quantify their impact on performance and review mitigation efforts. Finally, we discuss the constraints that arise from circuits having to operate within a living cell. Collectively, better tools, well-characterized parts and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications, from living therapeutics to the atomic manufacturing of functional materials.National Institute of General Medical Sciences (U.S.) (Grant P50 GM098792)National Institute of General Medical Sciences (U.S.) (Grant R01 GM095765)National Science Foundation (U.S.). Synthetic Biology Engineering Research Center (EEC0540879)Life Technologies, Inc. (A114510)National Science Foundation (U.S.). Graduate Research FellowshipUnited States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant 4500000552

    Origin of the response of electrostatic particle probes

    No full text

    Anaesthetic management for balloon dilation of cor triatriatum dexter in a dog

    No full text
    A three-month-old female Rottweiler puppy was referred for intravascular correction of a previously identified cor triatriatum dexter. Echocardiography confirmed the presence of a hyperechoic membrane that divided the right atrium into a cranial and caudal chamber. A foramen in this membrane allowed the blood to flow from the caudal to the cranial chamber. Balloon dilation of the defect under transthoracic echocardiographic guidance was scheduled for the following day. The dog was premedicated with 0.5ÎĽg/kg sufentanil and 0.2mg/kg midazolam administered intravenously. General anaesthesia was induced with 2mg/kg propofol and maintained with inhaled isoflurane in oxygen; at the same time, a constant rate infusion of 0.5ÎĽg/kg/h sufentanil was administered by means of an infusion pump. Uneventful ventricular and supraventricular tachyarrhythmias developed during the placement of catheters and balloon dilation. At the end of procedure, when the guide wire and balloon catheter were removed, normal sinus rhythm was observed. To the authors' knowledge, no previous reports have described the anaesthetic management of a balloon dilation procedure for cor triatriatum dexter in dogs

    Socioeconomic Deprivation, Adverse Childhood Experiences and Medical Disorders in Adulthood: Mechanisms and Associations

    No full text
    corecore