1,371 research outputs found
A generic approach for the development of short-term predictions of Escherichia coli and biotoxins in shellfish
Microbiological contamination or elevated marine biotoxin concentrations within shellfish can result in temporary closure of shellfish aquaculture harvesting, leading to financial loss for the aquaculture business and a potential reduction in consumer confidence in shellfish products. We present a method for predicting short-term variations in shellfish concentrations of Escherichia coli and biotoxin (okadaic acid and its derivates dinophysistoxins and pectenotoxins). The approach was evaluated for 2 contrasting shellfish harvesting areas. Through a meta-data analysis and using environmental data in situ, satellite observations and meteorological nowcasts and forecasts), key environmental drivers were identified and used to develop models to predict E. coli and biotoxin concentrations within shellfish. Models were trained and evaluated using independent datasets, and the best models were identified based on the model exhibiting the lowest root mean square error. The best biotoxin model was able to provide 1 wk forecasts with an accuracy of 86%, a 0% false positive rate and a 0% false discovery rate (n = 78 observations) when used to predict the closure of shellfish beds due to biotoxin. The best E. coli models were used to predict the European hygiene classification of the shellfish beds to an accuracy of 99% (n = 107 observations) and 98% (n = 63 observations) for a bay (St Austell Bay) and an estuary (Turnaware Bar), respectively. This generic approach enables high accuracy short-term farm-specific forecasts, based on readily accessible environmental data and observations
Eta Carinae -- Physics of the Inner Ejecta
Eta Carinae's inner ejecta are dominated observationally by the bright
Weigelt blobs and their famously rich spectra of nebular emission and
absorption lines. They are dense (n_e ~ 10^7 to 10^8 cm^-3), warm (T_e ~ 6000
to 7000 K) and slow moving (~40 km/s) condensations of mostly neutral (H^0)
gas. Located within 1000 AU of the central star, they contain heavily
CNO-processed material that was ejected from the star about a century ago.
Outside the blobs, the inner ejecta include absorption-line clouds with similar
conditions, plus emission-line gas that has generally lower densities and a
wider range of speeds (reaching a few hundred km/s) compared to the blobs. The
blobs appear to contain a negligible amount of dust and have a nearly dust-free
view of the central source, but our view across the inner ejecta is severely
affected by uncertain amounts of dust having a patchy distribution in the
foreground. Emission lines from the inner ejecta are powered by photoionization
and fluorescent processes. The variable nature of this emission, occurring in a
5.54 yr event cycle, requires specific changes to the incident flux that hold
important clues to the nature of the central object.Comment: This is Chapter 5 in a book entitled: Eta Carinae and the Supernova
Impostors, Kris Davidson and Roberta M. Humphreys, editors Springe
Composite Leptoquarks at the LHC
If electroweak symmetry breaking arises via strongly-coupled physics, the
observed suppression of flavour-changing processes suggests that fermion masses
should arise via mixing of elementary fermions with composite fermions of the
strong sector. The strong sector then carries colour charge, and may contain
composite leptoquark states, arising either as TeV scale resonances, or even as
light, pseudo-Nambu-Goldstone bosons. The latter, since they are coupled to
colour, get a mass of the order of several hundred GeV, beyond the reach of
current searches at the Tevatron. The same generic mechanism that suppresses
flavour-changing processes suppresses leptoquark-mediated rare processes,
making it conceivable that the many stringent constraints may be evaded. The
leptoquarks couple predominantly to third-generation quarks and leptons, and
the prospects for discovery at LHC appear to be good. As an illustration, a
model based on the Pati-Salam symmetry is described, and its embedding in
models with a larger symmetry incorporating unification of gauge couplings,
which provide additional motivation for leptoquark states at or below the TeV
scale, is discussed.Comment: 10 pp, version to appear in JHE
Formalization of Transform Methods using HOL Light
Transform methods, like Laplace and Fourier, are frequently used for
analyzing the dynamical behaviour of engineering and physical systems, based on
their transfer function, and frequency response or the solutions of their
corresponding differential equations. In this paper, we present an ongoing
project, which focuses on the higher-order logic formalization of transform
methods using HOL Light theorem prover. In particular, we present the
motivation of the formalization, which is followed by the related work. Next,
we present the task completed so far while highlighting some of the challenges
faced during the formalization. Finally, we present a roadmap to achieve our
objectives, the current status and the future goals for this project.Comment: 15 Pages, CICM 201
FCNC Effects in a Minimal Theory of Fermion Masses
As a minimal theory of fermion masses we extend the SM by heavy vectorlike
fermions, with flavor-anarchical Yukawa couplings, that mix with chiral
fermions such that small SM Yukawa couplings arise from small mixing angles.
This model can be regarded as an effective description of the fermionic sector
of a large class of existing flavor models and thus might serve as a useful
reference frame for a further understanding of flavor hierarchies in the SM.
Already such a minimal framework gives rise to FCNC effects through exchange of
massive SM bosons whose couplings to the light fermions get modified by the
mixing. We derive general formulae for these corrections and discuss the bounds
on the heavy fermion masses. Particularly stringent bounds, in a few TeV range,
come from the corrections to the Z couplings.Comment: 19 pages, 1 figur
Flavourful Production at Hadron Colliders
We ask what new states may lie at or below the TeV scale, with sizable
flavour-dependent couplings to light quarks, putting them within reach of
hadron colliders via resonant production, or in association with Standard Model
states. In particular, we focus on the compatibility of such states with
stringent flavour-changing neutral current and electric-dipole moment
constraints. We argue that the broadest and most theoretically plausible
flavour structure of the new couplings is that they are hierarchical, as are
Standard Model Yukawa couplings, although the hierarchical pattern may well be
different. We point out that, without the need for any more elaborate or
restrictive structure, new scalars with "diquark" couplings to standard quarks
are particularly immune to existing constraints, and that such scalars may
arise within a variety of theoretical paradigms. In particular, there can be
substantial couplings to a pair of light quarks or to one light and one heavy
quark. For example, the latter possibility may provide a flavour-safe
interpretation of the asymmetry in top quark production observed at the
Tevatron. We thereby motivate searches for diquark scalars at the Tevatron and
LHC, and argue that their discovery represents one of our best chances for new
insight into the Flavour Puzzle of the Standard Model.Comment: 18 pp., 8 figures, references adde
Asymmetric Origin for Gravitino Relic Density in the Hybrid Gravity-Gauge Mediated Supersymmetry Breaking
We propose the hybrid gravity-gauge mediated supersymmetry breaking where the
gravitino mass is about several GeV. The strong constraints on supersymmetry
viable parameter space from the CMS and ATLAS experiments at the LHC can be
relaxed due to the heavy colored supersymmetric particles, and it is consistent
with null results in the dark matter (DM) direct search experiments such as
XENON100. In particular, the possible maximal flavor and CP violations from the
relatively small gravity mediation may naturally account for the recent LHCb
anomaly. In addition, because the gravitino mass is around the asymmetric DM
mass, we propose the asymmetric origin of the gravitino relic density and solve
the cosmological coincident problem on the DM and baryon densities \Omega_{\rm
DM}:\Omega_{B}\approx 5:1. The gravitino relic density arises from asymmetric
metastable particle (AMP) late decay. However, we show that there is no AMP
candidate in the minimal supersymmetric Standard Model (SM) due to the robust
gaugino/Higgsino mediated wash-out effects. Interestingly, AMP can be realized
in the well motivated supersymmetric SMs with vector-like particles or
continuous U(1)_R symmetry. Especially, the lightest CP-even Higgs boson mass
can be lifted in the supersymmetric SMs with vector-like particles.Comment: RevTex4, 21 pages, 1 figure, minor corrections, JHEP versio
Asymmetric Dark Matter from Leptogenesis
We present a new realization of asymmetric dark matter in which the dark
matter and lepton asymmetries are generated simultaneously through two-sector
leptogenesis. The right-handed neutrinos couple both to the Standard Model and
to a hidden sector where the dark matter resides. This framework explains the
lepton asymmetry, dark matter abundance and neutrino masses all at once. In
contrast to previous realizations of asymmetric dark matter, the model allows
for a wide range of dark matter masses, from keV to 10 TeV. In particular, very
light dark matter can be accommodated without violating experimental
constraints. We discuss several variants of our model that highlight
interesting phenomenological possibilities. In one, late decays repopulate the
symmetric dark matter component, providing a new mechanism for generating a
large annihilation rate at the present epoch and allowing for mixed warm/cold
dark matter. In a second scenario, dark matter mixes with the active neutrinos,
thus presenting a distinct method to populate sterile neutrino dark matter
through leptogenesis. At late times, oscillations and dark matter decays lead
to interesting indirect detection signals.Comment: 32 pages + appendix, references added, minor change
Stellar winds from Massive Stars
We review the various techniques through which wind properties of massive
stars - O stars, AB supergiants, Luminous Blue Variables (LBVs), Wolf-Rayet
(WR) stars and cool supergiants - are derived. The wind momentum-luminosity
relation (e.g. Kudritzki et al. 1999) provides a method of predicting mass-loss
rates of O stars and blue supergiants which is superior to previous
parameterizations. Assuming the theoretical sqrt(Z) metallicity dependence,
Magellanic Cloud O star mass-loss rates are typically matched to within a
factor of two for various calibrations. Stellar winds from LBVs are typically
denser and slower than equivalent B supergiants, with exceptional mass-loss
rates during giant eruptions Mdot=10^-3 .. 10^-1 Mo/yr (Drissen et al. 2001).
Recent mass-loss rates for Galactic WR stars indicate a downward revision of
2-4 relative to previous calibrations due to clumping (e.g. Schmutz 1997),
although evidence for a metallicity dependence remains inconclusive (Crowther
2000). Mass-loss properties of luminous (> 10^5 Lo) yellow and red supergiants
from alternative techniques remain highly contradictory. Recent Galactic and
LMC results for RSG reveal a large scatter such that typical mass-loss rates
lie in the range 10^-6 .. 10^-4 Mo/yr, with a few cases exhibiting 10^-3 Mo/yr.Comment: 16 pages, 2 figures, Review paper to appear in Proc `The influence of
binaries on stellar population studies', Brussels, Aug 2000 (D. Vanbeveren
ed.), Kluwe
How do MNC R&D laboratory roles affect employee international assignments?
Research and development (R&D) employees are important human resources for multinational corporations (MNCs) as they are the driving force behind the advancement of innovative ideas and products. International assignments of these employees can be a unique way to upgrade their expertise; allowing them to effectively recombine their unique human resources to progress existing knowledge and advance new ones. This study aims to investigate the effect of the roles of R&D laboratories in which these employees work on the international assignments they undertake. We categorise R&D laboratory roles into those of the support laboratory, the locally integrated laboratory and the internationally interdependent laboratory. Based on the theory of resource recombinations, we hypothesise that R&D employees in support laboratories are not likely to assume international assignments, whereas those in locally integrated and internationally interdependent laboratories are likely to assume international assignments. The empirical evidence, which draws from research conducted on 559 professionals in 66 MNC subsidiaries based in Greece, provides support to our hypotheses. The resource recombinations theory that extends the resource based view can effectively illuminate the international assignment field. Also, research may provide more emphasis on the close work context of R&D scientists rather than analyse their demographic characteristics, the latter being the focus of scholarly practice hitherto
- …
