55,004 research outputs found
A recurrence matrix method for the analysis of longitudinal and torsional vibrations in non-uniform multibranch beams with variable boundary conditions
An approximate method for calculating the longitudinal and torsional natural frequencies and associated modal data of a beamlike, variable cross section multibranch structure is presented. The procedure described is the numerical integration of the first order differential equations that characterize the beam element in longitudinal motion and that satisfy the appropriate boundary conditions
Simulation of large turbulent structures with the parabolic Navier-Stokes equations
The theoretical basis for well posed marching of a Parabolic Navier-Stokes (PNS) computational technique for supersonic flow is discussed and examples given to verify the analysis. It is demonstrated that stable computations can be made even with very small steps in the marching direction. The method is applied to cones at large angle of attack in high Reynolds number, supersonic flow. Streamline trajectories generated from the numerical solutions demonstrate the development of vortex structures on the lee side of the cone
Calculation of the microcanonical temperature for the classical Bose field
The ergodic hypothesis asserts that a classical mechanical system will in
time visit every available configuration in phase space. Thus, for an ergodic
system, an ensemble average of a thermodynamic quantity can equally well be
calculated by a time average over a sufficiently long period of dynamical
evolution. In this paper we describe in detail how to calculate the temperature
and chemical potential from the dynamics of a microcanonical classical field,
using the particular example of the classical modes of a Bose-condensed gas.
The accurate determination of these thermodynamics quantities is essential in
measuring the shift of the critical temperature of a Bose gas due to
non-perturbative many-body effects.Comment: revtex4, 10 pages, 1 figure. v2: updated to published version. Fuller
discussion of numerical results, correction of some minor error
Entanglement properties of degenerate four-wave mixing of matter-waves in a periodic potential
In a recent experiment Campbell et al. [Phys. Rev. Lett. 96, 020406 (2006)]
observed degenerate four-wave mixing of matter-waves in a one-dimensional
optical lattice, a process with potential for generating entanglement among
atoms. We analyse the essential quantum features of the experiment to show that
entanglement is created between the quadratures of the two scattered atomic
clouds and is a true many-body (rather than two-body) effect. We demonstrate a
significant violation of entanglement inequalities that is robust to a moderate
level of coherent seeding. The system is thus a promising candididate for
generating macroscopically entangled atomic samples.Comment: 4 pages, 3 figure
Pairing mean-field theory for the dynamics of dissociation of molecular Bose-Einstein condensates
We develop a pairing mean-field theory to describe the quantum dynamics of
the dissociation of molecular Bose-Einstein condensates into their constituent
bosonic or fermionic atoms. We apply the theory to one, two, and
three-dimensional geometries and analyze the role of dimensionality on the atom
production rate as a function of the dissociation energy. As well as
determining the populations and coherences of the atoms, we calculate the
correlations that exist between atoms of opposite momenta, including the column
density correlations in 3D systems. We compare the results with those of the
undepleted molecular field approximation and argue that the latter is most
reliable in fermionic systems and in lower dimensions. In the bosonic case we
compare the pairing mean-field results with exact calculations using the
positive- stochastic method and estimate the range of validity of the
pairing mean-field theory. Comparisons with similar first-principle simulations
in the fermionic case are currently not available, however, we argue that the
range of validity of the present approach should be broader for fermions than
for bosons in the regime where Pauli blocking prevents complete depletion of
the molecular condensate.Comment: 16 pages, 10 figure
- …