134 research outputs found

    The proton spin sum rule chiral bag prediction, an update

    Full text link
    We reevaluate a quark model prediction using the new QCD evolution function calculated to the 3 loop order and conclude that this model compares favorably with the new experimental results.Comment: 10 pages, 2 figures available by request, give fax numbe

    Lightest-neutralino decays in R_p-violating models with dominant lambda^{prime} and lambda couplings

    Full text link
    Decays of the lightest neutralino are studied in R_p-violating models with operators lambda^{prime} L Q D^c and lambda L L E^c involving third-generation matter fields and with dominant lambda^{prime} and lambda couplings. Generalizations to decays of the lightest neutralino induced by subdominant lambda^{prime} and lambda couplings are straightforward. Decays with the top-quark among the particles produced are considered, in addition to those with an almost massless final state. Phenomenological analyses for examples of both classes of decays are presented. No specific assumption on the composition of the lightest neutralino is made, and the formulae listed here can be easily generalized to study decays of heavier neutralinos. It has been recently pointed out that, for a sizable coupling lambda^{prime}_{333}, tau-sleptons may be copiously produced at the LHC as single supersymmetric particles, in association with top- and bottom-quark pairs. This analysis of neutralino decays is, therefore, a first step towards the reconstruction of the complete final state produced in this case.Comment: 40 pages, 11 figures, version to appear in JHE

    Gauge Unification in Supersymmetric Intersecting Brane Worlds

    Full text link
    We show that contrary to first expectations realistic three generation supersymmetric intersecting brane world models give rise to phenomenologically interesting predictions about gauge coupling unification. Assuming the most economical way of realizing the matter content of the MSSM via intersecting branes we obtain a model independent relation among the three gauge coupling constants at the string scale. In order to correctly reproduce the experimentally known values of sin^2[theta_W(M_z)] and alpha_s(M_z) this relation leads to natural gauge coupling unification at a string scale close to the standard GUT scale 2 x 10^16 GeV. Additional vector-like matter can push the unification scale up to the Planck scale.Comment: 18 pages, harvmac & 3 figures; v2: one ref. adde

    The ZZ' kinetic mixing in the light of the recent direct and indirect dark matter searches

    Full text link
    Several constructions, of stringy origins or not, generate abelian gauge extensions of the Standard Model (SM). Even if the particles of the SM are not charged under this extra U(1)U'(1), one cannot avoid the presence of a kinetic mixing between U(1)U'(1) and the hypercharge UY(1)U_Y(1). In this work, we constraint drastically this kinetic mixing, taking into account the recent experimental data from accelerator physics, direct detection and indirect detection of dark matter. We show that the region respecting WMAP and experimental constraints is now very narrowed along the pole line where MZD2mDMM_{Z_D}\simeq 2 m_{DM}, ZDZ_D being the gauge boson associated to the extra U(1)U'(1).Comment: 9 pages, 3 figures, final version to appear in JCA

    Spontaneous CP Violation in Non-Minimal Supersymmetric Models

    Full text link
    We study the possibilities of spontaneous CP violation in the Next-to-Minimal Supersymmetric Standard Model with an extra singlet tadpole term in the scalar potential. We calculate the Higgs boson masses and couplings with radiative corrections including dominant two loop terms. We show that it is possible to satisfy the LEP constraints on the Higgs boson spectrum with non-trivial spontaneous CP violating phases. We also show that these phases could account for the observed value of epsilonK.Comment: 21 pages, 7 Figures in Encapsulated Postscrip

    Global Study of the Simplest Scalar Phantom Dark Matter Model

    Full text link
    We present a global study of the simplest scalar phantom dark matter model. The best fit parameters of the model are determined by simultaneously imposing (i) relic density constraint from WMAP, (ii) 225 live days data from direct experiment XENON100, (iii) upper limit of gamma-ray flux from Fermi-LAT indirect detection based on dwarf spheroidal satellite galaxies, and (iv) the Higgs boson candidate with a mass about 125 GeV and its invisible branching ratio no larger than 40% if the decay of the Higgs boson into a pair of dark matter is kinematically allowed. The allowed parameter space is then used to predict annihilation cross sections for gamma-ray lines, event rates for three processes mono-b jet, single charged lepton and two charged leptons plus missing energies at the Large Hadron Collider, as well as to evaluate the muon anomalous magnetic dipole moment for the model.Comment: Matches JCAP accepted version. 25 pages, 7 figure

    CP-Violating Effects in Neutralino Scattering and Annihilation

    Get PDF
    CP-violating effects that mix the CP-even and CP-odd Higgs bosons can have important consequences for annihilation and scattering of supersymmetric neutralino dark matter. Specifically, we study the dependence on the phase of the third generation trilinear couplings At and Ab. We find enhancements in the neutralino annihilation scattering rate which are typically factors of one to four; in the narrow regime of parameter space with neutralino mass close to half the Higgs mass, we find new (CP violating) resonances which may increase the annihilation cross section by factors up to 106. CP-violating effects can also modify the neutralino scattering rate off nucleons. For cross sections accessible to upcoming experiments, the rate can be enhanced by a factor as large as 2 or suppressed by a factor of up to 3; for lower cross sections, the suppression can be as large as seven orders of magnitude. We find cases in the region being probed by dark matter searches which are experimentally or cosmologically excluded when CP is conserved but are allowed when CP is violated. These effects are important for direct and indirect detection of neutralino dark matter in cryogenic detectors, the Earth, the Sun, the galactic halo and the galactic center.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/49125/2/jhep072002052.pd

    Hyperon production in Ar+KCl collisions at 1.76A GeV

    Get PDF
    We present transverse momentum spectra, rapidity distribution and multiplicity of Lambda-hyperons measured with the HADES spectrometer in the reaction Ar(1.76A GeV)+KCl. The yield of Xi- is calculated from our previously reported Xi-/(Lambda+Sigma0) ratio and compared to other strange particle multiplicities. Employing a strangeness balance equation the multiplicities of the yet unmeasured charged Sigma hyperons can be estimated. Finally a statistical hadronization model is used to fit the yields of pi-, K+, K0s, K-, phi, Lambda and Xi-. The resulting chemical freeze-out temperature of T=(76+-2) MeV is compared to the measured slope parameters obtained from fits to the transverse mass distributions of the particles

    Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Full text link
    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas -- particle, nuclear and atomic is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for EPJ

    The Standard Cosmological Model

    Full text link
    The Standard Model of Particle Physics (SMPP) is an enormously successful description of high energy physics, driving ever more precise measurements to find "physics beyond the standard model", as well as providing motivation for developing more fundamental ideas that might explain the values of its parameters. Simultaneously, a description of the entire 3-dimensional structure of the present-day Universe is being built up painstakingly. Most of the structure is stochastic in nature, being merely the result of the particular realisation of the "initial conditions" within our observable Universe patch. However, governing this structure is the Standard Model of Cosmology (SMC), which appears to require only about a dozen parameters. Cosmologists are now determining the values of these quantities with increasing precision in order to search for "physics beyond the standard model", as well as trying to develop an understanding of the more fundamental ideas which might explain the values of its parameters. Although it is natural to see analogies between the two Standard Models, some intrinsic differences also exist, which are discussed here. Nevertheless, a truly fundamental theory will have to explain both the SMPP and SMC, and this must include an appreciation of which elements are deterministic and which are accidental. Considering different levels of stochasticity within cosmology may make it easier to accept that physical parameters in general might have a non-deterministic aspect.Comment: 16 pages, 2 figures, invited talk at "Theory Canada 1", June 2005, Vancouve
    corecore