3,556 research outputs found

    Searching for high-redshift centimeter-wave continuum, line and maser emission using the Square Kilometer Array

    Full text link
    We discuss the detection of redshifted line and continuum emission at radio wavelengths using a Square Kilometer Array (SKA), specifically from low-excitation rotational molecular line transitions of CO and HCN (molecular lines), the recombination radiation from atomic transitions in almost-ionized hydrogen (radio recombination lines; RRLs), OH and water maser lines, as well as from synchrotron and free-free continuum radiation and HI 21-cm line radiation. The detection of radio lines with the SKA offers the prospect to determine the redshifts and thus exact luminosities for some of the most distant and optically faint star-forming galaxies and active galactic nuclei (AGN), even those galaxies that are either deeply enshrouded in interstellar dust or shining prior to the end of reionization. Moreover, it provides an opportunity to study the astrophysical conditions and resolved morphologies of the most active regions in galaxies during the most active phase of star formation at redshift z~2. A sufficiently powerful and adaptable SKA correlator will enable wide-field three-dimensional redshift surveys at chosen specific high redshifts, and will allow new probes of the evolution of large-scale structure (LSS) in the distribution of galaxies. The detection of molecular line radiation favours pushing the operating frequencies of SKA up to at least 26 GHz, and ideally to 40 GHz, while very high redshift maser emissions requires access to about 100 MHz. To search for LSS the widest possible instantaneous field of view would be advantageous.Comment: 12 pages, 2 figures. To appear in "Science with the Square Kilometer Array," eds. C. Carilli and S. Rawlings, New Astronomy Reviews (Elsevier: Amsterdam

    A Dense Gas Trigger for OH Megamasers

    Full text link
    HCN and CO line diagnostics provide new insight into the OH megamaser (OHM) phenomenon, suggesting a dense gas trigger for OHMs. We identify three physical properties that differentiate OHM hosts from other starburst galaxies: (1) OHMs have the highest mean molecular gas densities among starburst galaxies; nearly all OHM hosts have = 10^3-10^4 cm^-3 (OH line-emitting clouds likely have n(H2) > 10^4 cm^-3). (2) OHM hosts are a distinct population in the nonlinear part of the IR-CO relation. (3) OHM hosts have exceptionally high dense molecular gas fractions, L(HCN)/L(CO)>0.07, and comprise roughly half of this unusual population. OH absorbers and kilomasers generally follow the linear IR-CO relation and are uniformly distributed in dense gas fraction and L(HCN), demonstrating that OHMs are independent of OH abundance. The fraction of non-OHMs with high mean densities and high dense gas fractions constrains beaming to be a minor effect: OHM emission solid angle must exceed 2 pi steradians. Contrary to conventional wisdom, IR luminosity does not dictate OHM formation; both star formation and OHM activity are consequences of tidal density enhancements accompanying galaxy interactions. The OHM fraction in starbursts is likely due to the fraction of mergers experiencing a temporal spike in tidally driven density enhancement. OHMs are thus signposts marking the most intense, compact, and unusual modes of star formation in the local universe. Future high redshift OHM surveys can now be interpreted in a star formation and galaxy evolution context, indicating both the merging rate of galaxies and the burst contribution to star formation.Comment: 5 pages, 3 figures, 1 table, accepted by ApJ Letter

    Ab initio Quantum and ab initio Molecular Dynamics of the Dissociative Adsorption of Hydrogen on Pd(100)

    Full text link
    The dissociative adsorption of hydrogen on Pd(100) has been studied by ab initio quantum dynamics and ab initio molecular dynamics calculations. Treating all hydrogen degrees of freedom as dynamical coordinates implies a high dimensionality and requires statistical averages over thousands of trajectories. An efficient and accurate treatment of such extensive statistics is achieved in two steps: In a first step we evaluate the ab initio potential energy surface (PES) and determine an analytical representation. Then, in an independent second step dynamical calculations are performed on the analytical representation of the PES. Thus the dissociation dynamics is investigated without any crucial assumption except for the Born-Oppenheimer approximation which is anyhow employed when density-functional theory calculations are performed. The ab initio molecular dynamics is compared to detailed quantum dynamical calculations on exactly the same ab initio PES. The occurence of quantum oscillations in the sticking probability as a function of kinetic energy is addressed. They turn out to be very sensitive to the symmetry of the initial conditions. At low kinetic energies sticking is dominated by the steering effect which is illustrated using classical trajectories. The steering effects depends on the kinetic energy, but not on the mass of the molecules. Zero-point effects lead to strong differences between quantum and classical calculations of the sticking probability. The dependence of the sticking probability on the angle of incidence is analysed; it is found to be in good agreement with experimental data. The results show that the determination of the potential energy surface combined with high-dimensional dynamical calculations, in which all relevant degrees of freedon are taken into account, leads to a detailed understanding of the dissociation dynamics of hydrogen at a transition metal surface.Comment: 15 pages, 9 figures, subm. to Phys. Rev.

    Aharonov-Bohm-like effect for light propagating in nematics with disclinations

    Full text link
    Using a geometric approach for the propagation of light in anisotropic media, we investigate what effect the director field of disclinations may have on the polarization state of light. Parallel transport around the defect, of the spinor describing the polarization, indicates the acquisition of a topological phase, in analogy with the Aharonov-Bohm effect.Comment: 6 pages, to appear in Europhysics Letter

    A Search for OH Megamasers at z > 0.1. III. The Complete Survey

    Full text link
    We present the final results from the Arecibo Observatory OH megamaser survey. We discuss in detail the properties of the remaining 18 OH megamasers detected in the survey, including 3 redetections. We place upper limits on the OH emission from 85 nondetections and examine the properties of 25 ambiguous cases for which the presence or absence of OH emission could not be determined. The complete survey has discovered 50 new OH megamasers (OHMs) in (ultra)luminous infrared galaxies ([U]LIRGs) which doubles the sample of known OHMs and increases the sample at z>0.1 sevenfold. The Arecibo OH megamaser survey indicates that the OHM fraction in LIRGs is an increasing function of the far-IR luminosity (L_{FIR}) and far-IR color, reaching a fraction of roughly one third in the warmest ULIRGs. Significant relationships between OHMs and their hosts are few, primarily due to a mismatch in size scales of measured properties and an intrinsic scatter in OHM properties roughly equal to the span of the dataset. We investigate relationships between OHMs and their hosts with a variety of statistical tools including survival analysis, partial correlation coefficients, and a principal component analysis. There is no apparent OH megamaser ``fundamental plane.'' We compile data on all previously known OHMs and evaluate the possible mechanisms and relationships responsible for OHM production in merging systems. The OH-FIR relationship is reexamined using the doubled OHM sample and found to be significantly flatter than previously thought: L_{OH} ~ L_{FIR}^{1.2 +/- 0.1}. This near-linear dependence suggests a mixture of saturated and unsaturated masers, either within individual galaxies or across the sample.Comment: 28 pages, 14 figures, accepted by AJ. (AASTeX, includes emulateapj5 and onecolfloat5
    corecore