18 research outputs found

    Antioxidant capacity and total phenolic content of hydrothermally-treated 'Fuerte' avocado

    No full text
    Avocados possess high nutritional value with proven effectiveness in preventing cardiovascular diseases, attributed primarily to their unsaturated fatty acids content. This fruit is also rich in carotenoids and vitamins, particularly vitamin E. This work evaluates the antioxidant capacity and total phenolic content of hydrothermally-treated Fuerte avocado. Fruits were selected and hydrothermally treated at 45°C for 5, 10, 15 and 20 min. They were then stored in a refrigerator (10 ± 10°C and 90±5% relative humidity) and evaluated over a 15-day period. The total phenolic content increased up to the sixth day of storage, and decreased thereafter, without differences between the treatments. The percentage of antioxidant capacity of the control and the hydrothermally-treated samples for 5 and 10 min increased during storage. Untreated fruits showed the highest percentage of antioxidant capacity. However, the antioxidant capacity of avocado fruits subjected to these treatments declined starting on the twelfth day of storage, possibly due to the fruits' senescence. Hydrothermal treatments for 15 and 20 min delayed fruit senescence while the antioxidant capacity continued to increase up to the fifteenth day of storage. No significant correlation was found between antioxidant capacity and total phenolic content. The antioxidant capacity of ripe Fuerte avocado was higher than that of unripe or overripe avocado

    Systemic Administration of Sphingosine-1-phosphate Increases Bronchial Hyper-Responsiveness in the Mouse

    No full text
    Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that plays important roles in allergic responses, including asthma. S1P acts on many cell types, such as mast cells, the airway epithelium, airway smooth muscle, and many immune cells. In this study we have evaluated whether a systemic administration of S1P to Balb/c mice modifies airway reactivity. Our data show that S1P (0.1-10 ng) given subcutaneously to Balb/c mice causes a specific and dose-dependent increase in cholinergic reactivity of bronchial tissues in vitro. This effect is (1) dose dependent, with a maximal effect of the dose of 10 ng of S1P; and (2) time dependent, reaching a maximal effect 21 days after S1P administration. Similarly, in the whole lung assay there is a dose- and time-dependent increase in lung resistance. Lungs isolated from S1P-treated mice displayed an increase in mast cell number. Furthermore, there is an increase of IL-4, IL-13, and IL-17 production. In conclusion, our data demonstrate that S1P signaling is involved in the complex pathway underlying airway hyperresponsiveness
    corecore